Model-Based Interpretation of Groundwater Arsenic Mobility during in Situ Reductive Transformation of Ferrihydrite.

Environ Sci Technol

Department of Environmental Engineering , Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs . Lyngby , Denmark.

Published: June 2019

Arsenic (As) release and mobility in groundwater is coupled to the iron (Fe) cycling and the associated transformation of Fe-oxides present in sediments. Recent in situ experiments have provided observations on arsenic mobilization and co-occurring reductive mineral transformation when placing As-loaded ferrihydrite-coated sand for 80 days in wells of an As-contaminated aquifer of Northern China. However, the complex temporal change in solid-associated arsenic and the multiple geochemical processes occurring when the flowing groundwater contacts the As-loaded ferrihydrite-coated sand hamper a detailed evaluation of the experimental data set. In this study, we develop a modeling approach that allows a quantitative interpretation of arsenic release and ferrihydrite transformation observed during the in situ experiments. The model accounts for the interplay of abiotic and biotic geochemical processes (i.e., surface complexation, reductive dissolution, formation of secondary iron minerals, and arsenic sequestration into the newly formed minerals) involved in the transformation of Fe-oxides and controlling arsenic mobility. The results show the capability of the proposed approach to reproduce the temporal trends of solid arsenic and ferrihydrite concentrations, as well as the spatial variability of mineral transformation, observed in different wells using a common set of surface complexation parameters and kinetic rate constants. The simulation outcomes allowed us to disentangle the specific contribution of the different mechanisms controlling the release of arsenic. It was possible to identify an initial rapid but minor release of As (13-23% of the initial surface concentration) due to desorption from ferrihydrite, as well as the reduction of adsorbed As(V) to As(III) upon contact with the flowing anoxic groundwater. Successively, reductive dissolution of ferrihydrite caused the decrease of the amount of the Fe mineral phase and led to a major depletion of solid-associated arsenic. The produced Fe(II) catalyzed the ferrihydrite conversion into more crystalline Fe(III) oxides (i.e., lepidocrocite and goethite) through Ostwald ripening, and resulted in the formation of siderite and mackinawite upon reaction with carbonates and sulfides naturally present in the groundwater. The model results also showed that, whereas the decrease in surface sites during reductive dissolution of ferrihydrite promoted arsenic mobilization, the mineral transformation limited As release through its sequestration into the newly formed secondary mineral phases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b00527DOI Listing

Publication Analysis

Top Keywords

mineral transformation
12
reductive dissolution
12
arsenic
11
arsenic mobility
8
arsenic release
8
transformation fe-oxides
8
situ experiments
8
arsenic mobilization
8
as-loaded ferrihydrite-coated
8
ferrihydrite-coated sand
8

Similar Publications

Collagen-mediated cardiovascular calcification.

Int J Biol Macromol

January 2025

Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; School of Engineering Medicine, Beihang University, Beijing 100083, China. Electronic address:

Cardiovascular calcification is a pathological process commonly observed in the elderly. Based on the location of the calcification, cardiovascular calcification can be classified into two main types: vascular calcification and valvular calcification. Collagen plays a critical role in the development of cardiovascular calcification lesions.

View Article and Find Full Text PDF

Edaphic factors mediate the response of nitrogen cycling and related enzymatic activities and functional genes to heavy metals: A review.

Ecotoxicol Environ Saf

January 2025

College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China.

Soil nitrogen (N) transformations control N availability and plant production and pose environmental concerns when N is lost, raising issues such as soil acidification, water contamination, and climate change. Former studies suggested that soil N cycling is chiefly regulated by microbial activity; however, emerging evidence indicates that this regulation is disrupted by heavy metal (HM) contamination, which alters microbial communities and enzyme functions critical to N transformations. Environmental factors like soil organic carbon, soil texture, water content, temperature, soil pH, N fertilization, and redox status play significant roles in modulating the response of soil N cycling to HM contamination.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.

View Article and Find Full Text PDF

Graphite oxidation to graphene oxide (GO) is carried out using methods developed by Brodie (GO-B) and Hummers (GO-H). However, a comparison of the antibacterial properties based on the physicochemical properties has not been performed. Therefore, this paper outlines a comparative analysis of GO-H and GO-B on antibacterial efficacy against Gram-positive and Gram-negative bacterial cultures and biofilms in an aqueous environment and discusses which of the properties of these GO nanomaterials have the most significant impact on the antibacterial activity of these materials.

View Article and Find Full Text PDF

Bioremediation of Heavy Metal-Contaminated Solution and Aged Refuse by Microbially Induced Calcium Carbonate Precipitation: Further Insights into .

Microorganisms

January 2025

Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

Recently, the ability of microbial-induced calcium carbonate precipitation (MICP) to remediate heavy metals has been widely explored. was selected to remediate heavy metal-contaminated solution and aged refuse, exploring the feasibility of bioremediation of heavy metals and analyzing the changes in heavy metal forms before and after bioremediation, as well as the mechanism of remediation. The results showed that achieved remediation rates of 95%, 84%, 97%, and 98% for Cd, Pb, Zn, and Cr (III) in contaminated solution, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!