Enhanced Antiarthritic Efficacy by Nanoparticles of (-)-Epigallocatechin Gallate-Glucosamine-Casein.

J Agric Food Chem

The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences , Zhejiang A & F University, Linan 311300 , China.

Published: June 2019

This work aims to improve the antiarthritic activity of (-)-epigallocatechin gallate (EGCG) and glucosamine (GA) through fabrication and optimization of casein protein nanoparticles (EGC-NPs). Optimized EGC-NPs were obtained with a EGCG/GA/casein ratio of 1:2:8 (w/w/w). The EGC-NPs gave a mean size of 186 ± 3.5 nm and an entrapment efficiency of 86.8 ± 2.7%, and they exhibited a greater inhibitory activity against human fibroblast-like synoviocytes-osteoarthritis cells and human fibroblast-like synoviocytes-rheumatoid arthritis cells compared with that of the EGCG-GA mixture by 33.5% and 20.8%, respectively. Freeze-dried EGC-NPs stored at 25 °C during 12 months showed high dispersion stability. Moreover, the redispersion of the freeze-dried EGC-NPs produced almost no significant changes in their physicochemical properties and bioactivity. Rat experiments demonstrated that the antiarthritis effect of the EGC-NPs was significantly higher than that of EGCG-GA mixture, as assessed through an analysis of anti-inflammatory efficacy, radiographic images and histopathological assessments of paw joints, and immunohistochemical changes in serum cytokines. The enchanced antiarthritic activity in vivo was consistent with that in vitro. The EGC-NPs demonstrate potential as a food supplement for the treatment of arthritis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.9b02075DOI Listing

Publication Analysis

Top Keywords

antiarthritic activity
8
human fibroblast-like
8
egcg-ga mixture
8
freeze-dried egc-nps
8
egc-nps
7
enhanced antiarthritic
4
antiarthritic efficacy
4
efficacy nanoparticles
4
nanoparticles --epigallocatechin
4
--epigallocatechin gallate-glucosamine-casein
4

Similar Publications

Rheumatoid arthritis (RA), a condition characterized by joint deterioration through the action of matrix metalloproteinases (MMPs), is prevalent worldwide. Bee venom (BV) has traditionally been used in Chinese medicine for pain, arthritis, rheumatism, skin diseases, etc. BV is enriched with active substances, notably melittin and phospholipase A2 (PLA2), offering significant therapeutic potential.

View Article and Find Full Text PDF

Introduction: Rheumatoid arthritis is an autoimmune disease that mainly causes joint damage. The patient experiences loss of appetite, pain, fever, and fatigue. The present study was designed to phytochemically characterize and evaluate the anti-arthritic activity of green-synthesized copper oxide (CuO) nanoparticles (NPs) using the hydroalcoholic extract of roots in an adjuvant-induced arthritic rat model.

View Article and Find Full Text PDF

Background: Pain and inflammation are closely associated with rheumatoid arthritis (RA), which affects the bones and joints.

Aim: While there are a number of therapeutic options for arthritis, their side effects restrict their use and encourage the search for alternative, natural remedies.

Methods: In male rats, we examined the anti-inflammatory and anti-arthritic properties of venom (NHV).

View Article and Find Full Text PDF

Rheumatoid arthritis is an autoimmune disorder affecting multiple joints and requires lifelong treatment. Present study was designed to formulate Esculin-loaded chitosan nanoparticles (ENPs) and evaluation of its anti-inflammatory and anti-arthritic action. The acute toxicity study of ENPs was also performed.

View Article and Find Full Text PDF

Background: Hypoxia can affect the occurrence and development of inflammation in humans, but its effects on the disease progression of osteoarthritis (OA) remain unclear. Synovial macrophages play an essential role in the progression of arthritis. Specifically, the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) in macrophages induces the secretion of a series of inflammatory factors, accelerating the progression of OA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!