Triggering electrochemical reactions with light provides a powerful tool for the control of complex reaction schemes on photoactive electrodes. Here, we report on the light-directed, multiplexed detection of enzymatic substrates using a nonstructured gold electrode modified with CdSe/ZnS quantum dots (QDs) and two enzymes, glucose oxidase (GOx) and sarcosine oxidase (SOx). While QDs introduce visible-light sensitivity into the electrode architecture, GOx and SOx allow for a selective conversion of glucose and sarcosine, respectively. For the QD immobilization to the gold electrode, a linker-assisted approach using trans-4,4'-stilbenedithiol has been used, resulting in the generation of a photocurrent. Subsequently, GOx and SOx have been immobilized in spatially separated spots onto the QD electrode. For the local readout of the QD electrode, a new measurement setup has been developed by moving a laser pointer across the surface to defined positions on the chip surface. The amplitudes of the photocurrents upon illumination of the GOx or SOx spot depend in a concentration-dependent manner on the presence of glucose and sarcosine, respectively. This measurement also allows for a selective detection in the presence of other substances. The setup demonstrates the feasibility of multiplexed measurements of enzymatic reactions using a focused light pointer, resulting in an illumination area with a diameter of 0.3 mm for analyzing spots of different enzymes. Moving the laser pointer in the x- and y-direction and simultaneously detecting the local photocurrent also allow a spatial imaging of enzyme immobilization. Here, not only the spot dimensions but also the activity of the enzyme can be verified.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b03990DOI Listing

Publication Analysis

Top Keywords

gox sox
12
enzymatic reactions
8
gold electrode
8
glucose sarcosine
8
moving laser
8
laser pointer
8
electrode
5
multiplexed readout
4
readout enzymatic
4
reactions laterally
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!