Dual Stable Nanomedicines Prepared by Cisplatin-Crosslinked Camptothecin Prodrug Micelles for Effective Drug Delivery.

ACS Appl Mater Interfaces

School of Materials Science & Engineering , Linyi University, Linyi 276000 , People's Republic of China.

Published: June 2019

A polymer micelle-based drug delivery system has faced many challenges due to the lack of stability especially after being diluted in blood, resulting in a premature release. Herein, we developed camptothecin (CPT)-conjugated prodrug (CPTP) micelles in which CPT was grafted to the poly(ethylene glycol)-poly(glutamic acid) block copolymer via a disulfide bond linker for a redox-triggered drug release. Then, the cisplatin (CDDP)-crosslinked CPT-prodrug micelles (CPTP/CDDP) with a hybrid complex as a stable structure were successfully established via the CDDP (Pt)-carboxyl (COOH) chelate interaction. The resulting dual CPTP/CDDP had an average hydrodynamic radius of about 50 nm with a narrow distribution, which was conducive to the promotion of solid tumor accumulation. Importantly, CPT chemical bonding to the polymer backbone obviously stabilizes the CPT-prodrug micelles and prolongs their circulation time. Moreover, both CPT and CDDP are clinically used antitumor drugs; CDDP not only behaves as an ancillary anticarcinogen but also serves as a crosslinker to restrain the untimely burst release of CPT and to achieve synergistic antitumor efficacy. In addition, the CPTP/CDDP also exhibited a sustained reduction responsive release of CPT accompanied by the dissociation of the CDDP-COOH complex. This design ingeniously solved the contradiction between the stability and release of polymer micelle-based nanomedicines. Both in vitro and in vivo tests demonstrated an amazing antineoplastic efficacy compared with free drugs (CPT or CDDP) and just their physical mixing, indicating great promise for cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b03960DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
polymer micelle-based
8
cpt-prodrug micelles
8
cpt cddp
8
release cpt
8
cpt
6
release
5
dual stable
4
stable nanomedicines
4
nanomedicines prepared
4

Similar Publications

Chimeric Peptide-Engineered Polyprodrug Enhances Cytotoxic T Cell Response by Inducing Immunogenic Cell Death and Upregulating Major Histocompatibility Complex Class I.

ACS Nano

December 2024

The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.

Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.

View Article and Find Full Text PDF

Chemoprevention of natural product against oral cancer: A comprehensive review.

Malays J Pathol

December 2024

Universiti Sains Malaysia, School of Dental Sciences, Health Campus, Kubang Kerian, Kelantan, Malaysia.

Introduction: Oral cancer is considered the sixth most common form of cancer worldwide. It causes significant morbidity and mortality, especially in low socioeconomic status groups. However, Cancer chemoprevention encompasses the use of specific compounds to suppress the growth of tumours or inhibit carcinogenesis.

View Article and Find Full Text PDF

Background: Cystic echinococcosis (CE) is a common neglected parasitic disease. Nanoparticles containing drugs have been widely utilized in various formulations for several purposes, including improving the bioavailability of drugs by increasing the solubility and dissolution rate of the nanoparticles. The purpose of this study was to evaluate the effects of solid lipid nanoparticles containing albendazole and conjugated to albumin (B-SLN + ABZ) as a novel treatment approach for hydatid cysts in vivo.

View Article and Find Full Text PDF

Role of PCBP2 in regulating nanovesicles loaded with curcumin to mitigate neuroferroptosis in neural damage caused by heat stroke.

J Nanobiotechnology

December 2024

Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.

Objective: This study aims to elucidate the mechanisms by which nanovesicles (NVs) transport curcumin(CUR) across the blood-brain barrier to treat hypothalamic neural damage induced by heat stroke by regulating the expression of poly(c)-binding protein 2 (PCBP2).

Methods: Initially, NVs were prepared from macrophages using a continuous extrusion method. Subsequently, CUR was loaded into NVs using sonication, yielding engineered cell membrane Nanovesicles loaded with curcumin (NVs-CUR), which were characterized and subjected to in vitro and in vivo tracking analysis.

View Article and Find Full Text PDF

Copper-coordination driven brain-targeting nanoassembly for efficient glioblastoma multiforme immunotherapy by cuproptosis-mediated tumor immune microenvironment reprogramming.

J Nanobiotechnology

December 2024

Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.

Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!