Engineering Color-Stable Blue Light-Emitting Diodes with Lead Halide Perovskite Nanocrystals.

ACS Appl Mater Interfaces

Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , CH-8093 Zürich , Switzerland.

Published: June 2019

AI Article Synopsis

  • Nanocrystalline lead halide perovskites, particularly CsPb(Br/Cl) NCs, offer bright, tunable emissions for blue light-emitting diodes (LEDs) suitable for display applications but face challenges with color instability due to halide ion segregation.
  • The study demonstrates that thinner NC layers can reduce color instability, and improving hole injection with two types of hole-transporting materials enhances device performance.
  • Additionally, using zwitterionic ligands for better NC washing and incorporating polystyrene in the layout helps achieve stable electroluminescence at 463 nm and over 1% external quantum efficiency, confirming the potential of perovskite NCs for blue-emissive displays.

Article Abstract

Nanocrystalline lead halide perovskites are promising as emissive layers for light-emitting diodes due to their bright, tunable emission with very narrow linewidths. Blue perovskite light-emitting diodes, in the wavelength range useful for display applications (460-470 nm), could be made with CsPb(Br/Cl) nanocrystals (NCs). However, mixed halide perovskites suffer from color instability, foremost, due to the segregation of halide ions. In this study, we address this issue with several measures. First, we show that thinner CsPb(Br/Cl) NC layers are less prone to color instability. Additionally, inefficient hole injection due to the deep-lying valence band of CsPb(Br/Cl) NCs detrimentally affects the device performance, and we mitigate this problem by stepwise hole injection using two hole-transporting materials. Next, we employ NCs capped with zwitterionic ligands that allow for a more thorough washing of the NC solutions. Furthermore, our new device layout explores the use of polystyrene in the emitting layer to limit the current leakage. Undertaking these steps, we show light-emitting diodes with a stable electroluminescence peak wavelength of 463 nm over the lifetime of the device and a peak external quantum efficiency of over 1%. The results prove that perovskite NCs are a viable contender in the development of blue-emissive, active pixel displays.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b02472DOI Listing

Publication Analysis

Top Keywords

light-emitting diodes
16
lead halide
8
halide perovskites
8
color instability
8
hole injection
8
engineering color-stable
4
color-stable blue
4
light-emitting
4
blue light-emitting
4
diodes
4

Similar Publications

Road Traffic Gesture Autonomous Integrity Monitoring Using Fuzzy Logic.

Sensors (Basel)

December 2024

Computer Engineering, Brandenburg University of Technology, Cottbus-Senftenberg, 03046 Cottbus, Germany.

Occasionally, four cars arrive at the four legs of an unsignalized intersection at the same time or almost at the same time. If each lane has a stop sign, all four cars are required to stop. In such instances, gestures are used to communicate approval for one vehicle to leave.

View Article and Find Full Text PDF

Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa ( L.

View Article and Find Full Text PDF

In this study, it is shown that an efficient organic optocoupler (OPC) can be fabricated using commercially available and solution-processable organic semiconductors. The transmitter is a single-active-layer organic light-emitting diode (OLED) made from a well-known polyparavinylene derivative, Super Yellow. The receiver is an organic light-emitting diode (OLSD) with a single active layer consisting of a mixture of the polymer donor PTB7-Th and the low-molecular-weight acceptor ITIC; the receiver operates without an applied reverse voltage.

View Article and Find Full Text PDF

Synthesis and Characterization of UV-Curable Resin with High Refractive Index for a Luminance-Enhancing Prism Film.

Polymers (Basel)

December 2024

Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.

A novel monomer, 9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate), with a highly refractive index, purity, and excellent UV-curable properties, is synthesized through an optimized Fischer esterification process, reacting 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene with 3-mercaptopropionic acid. The structural characterization of this monomer is performed using Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. The synthesis conditions are optimized using a design-of-experiments approach.

View Article and Find Full Text PDF

Using the solid-state reaction technique, varied YSiO phosphors activated by europium (Eu) ions at varied concentrations were made at calcination temperatures of 1000 °C and 1250 °C during sintering in an air environment. The XRD technique identified the monoclinic structure, and the FTIR technique was used to analyze the generated phosphors. Photoluminescence emission and excitation patterns were measured using varying concentrations of Eu ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!