A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bottom-Up Synthesis of Graphene Monolayers with Tunable Crystallinity and Porosity. | LitMetric

We present a method for a bottom-up synthesis of atomically thin graphene sheets with tunable crystallinity and porosity using aromatic self-assembled monolayers (SAMs) as molecular precursors. To this end, we employ SAMs with pyridine and pyrrole constituents on polycrystalline copper foils and convert them initially into molecular nanosheets-carbon nanomembranes (CNMs)- via low-energy electron irradiation induced cross-linking and then into graphene monolayers via pyrolysis. As the nitrogen atoms are leaving the nanosheets during pyrolysis, nanopores are generated in the formed single-layer graphene. We elucidate the structural changes upon the cross-linking and pyrolysis down to the atomic scale by complementary spectroscopy and microscopy techniques including X-ray photoelectron and Raman spectroscopy, low energy electron diffraction, atomic force, helium ion, and high-resolution transmission electron microscopy, and electrical transport measurements. We demonstrate that the crystallinity and porosity of the formed graphene can be adjusted via the choice of molecular precursors and pyrolysis temperature, and we present a kinetic growth model quantitatively describing the conversion of molecular CNMs into graphene. The synthesized nanoporous graphene monolayers resemble a percolated network of graphene nanoribbons with a high charge carrier mobility (∼600 cm/(V s)), making them attractive for implementations in electronic field-effect devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b03475DOI Listing

Publication Analysis

Top Keywords

graphene monolayers
12
crystallinity porosity
12
bottom-up synthesis
8
graphene
8
tunable crystallinity
8
molecular precursors
8
synthesis graphene
4
monolayers
4
monolayers tunable
4
porosity method
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!