In Silico Approach for Designing Potent Neuroprotective Hexapeptide.

ACS Chem Neurosci

Organic and Medicinal Chemistry Division and Structural Biology and Bioinformatics Division , CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur , Kolkata , 700 032 WB , India.

Published: June 2019

Alzheimer's disease (AD) is a constantly recurring neurodegenerative disease that deteriorates over a period of time. In this pathology, connections between neurons become extremely damaged due to the deposition of senile plaques in the membrane region, which results in abnormal signal transduction processes. Also, the intracellular microtubule networks are disrupted in the hyperphosphorylated tau cascade of AD. Therefore, design and development of potent neuroprotective molecules that can instantaneously target multiple facets of AD pathogenesis are greatly needed to tackle this unmet medical need. Here, we have implemented a pharmacophore based in silico analysis of various neuroprotective peptides known for neurotherapeutic application in AD. Fascinatingly, we have identified an active core of these peptides and designed a library of hexapeptides. We observed that peptide "LETVNQ" (LE6) has shown significant protection ability against degeneration of neurons. Experimental evidence suggests that this peptide immensely reduced the aggregation rate of amyloid-β (Aβ) and helped in microtubule polymerization. Intriguingly, this newly designed peptide does not have any cytotoxicity toward differentiated PC12 neurons; rather it helps in neurite outgrowth. Further, LE6 helps to maintain the complex microtubule network in cells by promoting the polymerization rate of intracellular microtubules and mediates excellent protection of neurons even after removal of nerve growth factor (NGF). Finally, we observed that this LE6 peptide has substantial stability under physiological conditions and helps to retain healthy morphology of primary rat cortical neurons. This excellent piece of work identifies a potent hexapeptide, which has exceptional ability to protect neurons as well as microtubule from degeneration and may become potent therapeutics against AD pathogenesis in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.9b00251DOI Listing

Publication Analysis

Top Keywords

potent neuroprotective
8
neurons
6
silico approach
4
approach designing
4
potent
4
designing potent
4
neuroprotective hexapeptide
4
hexapeptide alzheimer's
4
alzheimer's disease
4
disease constantly
4

Similar Publications

Chemotherapy-induced peripheral neuropathy (CIPN) is a serious side effect of anticancer agents with limited effective preventive or therapeutic interventions. Although fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, has demonstrated neuroprotective and analgesic properties, its clinical utility is hindered by low receptor affinity, poor subtype selectivity, and suboptimal bioavailability. A190, a highly selective and potent nonfibrate PPARα agonist, offers a promising alternative but is limited by poor aqueous solubility, resulting in reduced oral bioavailability and therapeutic efficacy.

View Article and Find Full Text PDF

Arechuines A-D, arecoline alkaloids from the peels of L.

Nat Prod Res

January 2025

Guangdong Provincial Engineering Research Center for Modernization of TCM, NMPA Key Laboratory for Quality Evaluation of TCM, College of Pharmacy, Jinan University, Guangzhou, China.

Four novel arecoline alkaloid atropisomers, arechuines A-D (-), were obtained from the peels of L. Their structures were elucidated by UV, IR, MS and NMR spectra. The absolute configurations of (+)/(-)- were determined by comparing the experimental and calculated ECD spectra.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prominent neurodegenerative disorder affecting the central nervous system in the elderly. Current understanding of AD primarily centers on the gradual decline in cognitive and memory functions, believed to be influenced by factors including mitochondrial dysfunction, β-amyloid aggregation, and neuroinflammation. Emerging research indicates that neuroinflammation plays a significant role in the development of AD, with the inflammasome potentially mediating inflammatory responses that contribute to neurodegeneration.

View Article and Find Full Text PDF

Novel multipotent conjugate bearing tacrine and donepezil motifs with dual cholinergic inhibition and neuroprotective properties targeting Alzheimer's disease.

RSC Med Chem

January 2025

Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia

In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model.

View Article and Find Full Text PDF

Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.

Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.

Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!