A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Usefulness of Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. | LitMetric

Objectives: Intraductal papillary mucinous neoplasms (IPMNs) are precursor lesions of pancreatic adenocarcinoma. Artificial intelligence (AI) is a mathematical concept whose implementation automates learning and recognizing data patterns. The aim of this study was to investigate whether AI via deep learning algorithms using endoscopic ultrasonography (EUS) images of IPMNs could predict malignancy.

Methods: This retrospective study involved the analysis of patients who underwent EUS before pancreatectomy and had pathologically confirmed IPMNs in a single cancer center. In total, 3,970 still images were collected and fed as input into the deep learning algorithm. AI value and AI malignant probability were calculated.

Results: The mean AI value of malignant IPMNs was significantly greater than benign IPMNs (0.808 vs 0.104, P < 0.001). The area under the receiver operating characteristic curve for the ability to diagnose malignancies of IPMNs via AI malignant probability was 0.98 (P < 0.001). The sensitivity, specificity, and accuracy of AI malignant probability were 95.7%, 92.6%, and 94.0%, respectively; its accuracy was higher than human diagnosis (56.0%) and the mural nodule (68.0%). Multivariate logistic regression analysis showed AI malignant probability to be the only independent factor for IPMN-associated malignancy (odds ratio: 295.16, 95% confidence interval: 14.13-6,165.75, P < 0.001).

Discussion: AI via deep learning algorithm may be a more accurate and objective method to diagnose malignancies of IPMNs in comparison to human diagnosis and conventional EUS features.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602761PMC
http://dx.doi.org/10.14309/ctg.0000000000000045DOI Listing

Publication Analysis

Top Keywords

deep learning
16
malignant probability
16
intraductal papillary
8
papillary mucinous
8
mucinous neoplasms
8
learning algorithm
8
diagnose malignancies
8
malignancies ipmns
8
human diagnosis
8
ipmns
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!