Background: Primary lateral sclerosis (PLS) is considered a rare variant of motor neuron disease (MND) characterized by selective upper motor neuron dysfunction leading to limb weakness, spasticity, and even bulbar symptoms. Previous studies have demonstrated that mutations in ALSIN, spastic paraplegia 7 (SPG7), TBK1, ALS2, ERLIN2, and FIG4 are responsible for PLS. Most of them occurred in childhood to young-adult onset patients. The aim of this study was to identify the genetic lesion of patients with adult-onset PLS.

Methods: We applied whole-exome sequencing (WES) and MND and ataxia-related genes filtering strategies to discover the genetic factors in a Chinese adult-onset PLS family. Sanger sequencing was used in the cosegregation analysis in the affected family members.

Results: A mutation (c.2219A>G/p.Y740C) in exon 17 of SPG7 was identified in an adult-onset PLS patient and cosegregated with the affected members in this family. Meanwhile, the mutation was predicted to be deleterious by 3 bioinformatics programs (Polymorphism phenotyping-2, sorting intolerant from tolerant and MutationTaster). This variant may cause the structure changes of paraplegin protein.

Conclusions: We employed WES to detect a missense mutation of SPG7 gene in a PLS family. This finding expands the spectrum of known SPG7 mutations, and it may contribute to novel approaches to genetic diagnosis and counseling of families with PLS.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000500672DOI Listing

Publication Analysis

Top Keywords

spastic paraplegia
8
primary lateral
8
lateral sclerosis
8
motor neuron
8
adult-onset pls
8
pls family
8
pls
6
family
5
exome sequencing
4
sequencing identifies
4

Similar Publications

Purpose Of The Review: In the United States, spinal cord injuries affect approximately 18,000 individuals annually, most commonly resulting from mechanical trauma. The consequent paraplegia severely impairs motor functions, creating an urgent need for innovative therapeutic strategies that extend beyond traditional rehabilitation and pharmacotherapy. This review assesses the effectiveness of Spinal Cord Stimulation (SCS) in improving motor function in patients with spinal cord injuries, with a particular focus on paraplegia.

View Article and Find Full Text PDF

This case report presents a complex and challenging scenario of recurrent () bacteremia and tricuspid valve endocarditis in a 77-year-old male patient with multiple comorbidities and indwelling medical devices. The patient's medical history was significant for T4 paraplegia, neurogenic bladder requiring a chronic indwelling suprapubic catheter, heart block status post-permanent pacemaker placement, type 2 diabetes mellitus, chronic kidney disease, and chronic sacral wounds. The case highlights the difficulties in managing antibiotic-resistant infections, particularly in patients with implantable devices and chronic wounds.

View Article and Find Full Text PDF

Heterozygous variants in AP4S1 are not associated with a neurological phenotype.

Ann Clin Transl Neurol

January 2025

Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Biallelic loss-of-function variants in AP4S1 cause childhood-onset hereditary spastic paraplegia. A recent report suggested that heterozygous AP4S1 variants lead to a syndrome of lower limb spasticity and dysregulation of sphincter function. We critically evaluate this claim against clinical observations in 28 heterozygous carriers of the same AP4S1 variant (NM_007077.

View Article and Find Full Text PDF

AI-Powered Neurogenetics: Supporting Patient's Evaluation with Chatbot.

Genes (Basel)

December 2024

Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy.

Background/objectives: Artificial intelligence and large language models like ChatGPT and Google's Gemini are promising tools with remarkable potential to assist healthcare professionals. This study explores ChatGPT and Gemini's potential utility in assisting clinicians during the first evaluation of patients with suspected neurogenetic disorders.

Methods: By analyzing the model's performance in identifying relevant clinical features, suggesting differential diagnoses, and providing insights into possible genetic testing, this research seeks to determine whether these AI tools could serve as a valuable adjunct in neurogenetic assessments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!