In this study, a strain of SAR11 subgroup IIIa (termed HIMB114) was grown in seawater-based batch and continuous culture in order to quantify cellular features and metabolism relevant to SAR11 ecology. We report some of the first direct measurements of cellular elemental quotas for nitrogen (N) and phosphorus (P) for SAR11, grown in batch culture: 1.4 ± 0.9 fg N and 0.44 ± 0.01 fg P, respectively, that were consistent with the small size of HIMB114 cells (average volume of 0.09 μm). However, the mean carbon (C) cellular quota of 50 ± 47 fg C was anomalously high, but variable. The rates of phosphate (PO ) uptake measured from both batch and continuous cultures were exceptionally slow: in chemostats growing at 0.3 day, HIMB114 took up 1.1 ± 0.3 amol P cell day, suggesting that <30% of the cellular P requirement of HIMB114 was met by PO assimilation. The mean rate of leucine incorporation, a measure of bacterial production, during late-log-phase growth of batch HIMB114 cultures was 0.042 ± 0.02 amol Leu cell h While only weakly correlated with changes in specific growth rates, the onset of stationary phase resulted in decreases in cell-specific leucine incorporation that were proportional to changes in growth rate. The rates of cellular production, respiratory oxygen consumption, and changes in total organic C concentrations constrained cellular growth efficiencies to 13% ± 4%. Hence, despite a small genome and diminutively sized cells, SAR11 strain HIMB114 appears to grow at efficiencies similar to those of naturally occurring bacterioplankton communities. While SAR11 bacteria contribute a significant fraction to the total picoplankton biomass in the ocean and likely are major players in organic C and nutrient cycling, the cellular characteristics and metabolic features of most lineages have either only been hypothesized from genomes or otherwise not measured in controlled laboratory experimentation. The dearth of data on even the most basic characteristics for what is arguably the most abundant heterotroph in seawater has limited the specific consideration of SAR11 in ocean ecosystem modeling efforts. In this study, we provide measures of cellular P, N, and C, aerobic respiration, and bacterial production for a SAR11 strain growing in natural seawater medium that can be used to directly relate these features of SAR11 to biogeochemical cycling in the oceans. Through the development of a chemostat system to measure nutrient uptake during steady-state growth, we have also documented inorganic P uptake rates that allude to the importance of organic phosphorous to meet cellular P demands, even in the presence of nonlimiting PO concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589437 | PMC |
http://dx.doi.org/10.1128/mSystems.00218-18 | DOI Listing |
Bioresour Technol
January 2025
CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain.
This work investigates the optimization of medium-chain carboxylate (MCC) production through xylan mixed-culture monofermentation. The pH screening in batch assays showed that the hydrolysis stage and selectivity towards MCC precursors were optimised at pH 6. Subsequently, a continuous stirred tank reactor (CSTR) and a Sequential Batch Reactor (SBR) were operated at different Hydraulic Retention Times (HRT), revealing that the SBR at HRT 2 days yielded the highest caproic acid since lactic acid availability and chain elongation process were balanced.
View Article and Find Full Text PDFBioresour Technol
January 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024 PR China.
Extracellular polymeric substances (EPS) are well-acknowledged to accelerate microalgal biofilm formation, yet specific role of stratified EPS is unknown. Bacterial biofilm stratified EPS could enrich phosphorus, whether microalgal biofilm stratified EPS could also realize phosphorus or nitrogen enrichment remains unclarified. This study investigated microalgae dominant biofilm growth characteristics and nutrients removal via inoculating microalgae and stratified bacterial EPS at various microalgae:bacteria ratios.
View Article and Find Full Text PDFNat Commun
January 2025
Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.
Flow chemistry has many advantages over batch synthesis of organic small-molecules in terms of environmental compatibility, safety and synthetic efficiency when scale-up is considered. Herein, we report the 10-step chemo-biocatalytic continuous flow asymmetric synthesis of cyproterone acetate (4) in which 10 transformations are combined into a telescoped flow linear sequence from commercially available 4-androstene-3, 17-dione (11). This integrated one-flow synthesis features an engineered 3-ketosteroid-Δ-dehydrogenase (ReM2)-catalyzed Δ-dehydrogenation to form the C1, C2-double bond of A ring, a substrate-controlled Co-catalyzed Mukaiyama hydration of 9 to forge the crucial chiral C17α-OH group of D ring with excellent stereoselectivity, and a rapid flow Corey-Chaykovsky cyclopropanation of 7 to build the cyclopropyl core of A ring.
View Article and Find Full Text PDFBioresour Technol
January 2025
University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia. Electronic address:
Efforts to reduce the impact of chemical processes on the environment are leading to a shift to enzymatic alternatives, with laccases standing out for their versatile substrate oxidation capabilities. This study addresses the improvement of biocatalytic reactions by deep eutectic solvents (DES), in particular DES-based aqueous two-phase systems (ATPS) for the extraction of biomolecules. Continuous laccase extraction from crude samples was achieved using a DES-based ATPS, which was first optimized in a batch extractor and later intensified in a microextractor.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, Scotland, UK.
The prevalence of antibiotics in wastewater poses risks to human and animal health, contributing to antimicrobial resistance. Although various antibiotic removal methods exist, microalgae-based technology presents a cost-effective and eco-friendly alternative; however, limited research on its long-term integration in semi-continuous wastewater treatment trials hinders our understanding of its potential effectiveness. This investigation explored the antibiotic removal capabilities of the microalga Auxenochlorella protothecoides in photobioreactors with synthetic wastewater under semi-continuous conditions over one month.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!