Multivalued logic (MVL) computing could provide bit density beyond that of Boolean logic. Unlike conventional transistors, heterojunction transistors (H-TRs) exhibit negative transconductance (NTC) regions. Using the NTC characteristics of H-TRs, ternary inverters have recently been demonstrated. However, they have shown incomplete inverter characteristics; the output voltage (V ) does not fully swing from V to G . A new H-TR device structure that consists of a dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) layer stacked on a PTCDI-C13 layer is presented. Due to the continuous DNTT layer from source to drain, the proposed device exhibits novel switching behavior: p-type off/p-type subthreshold region /NTC/ p-type on. As a result, it has a very high on/off current ratio (≈10 ) and exhibits NTC behavior. It is also demonstrated that an array of 36 of these H-TRs have 100% yield, a uniform on/off current ratio, and uniform NTC characteristics. Furthermore, the proposed ternary inverter exhibits full V -to-G swing of V with three distinct logic states. The proposed transistors and inverters exhibit hysteresis-free operation due to the use of a hydrophobic gate dielectric and encapsulating layers. Based on this, the transient operation of a ternary inverter circuit is demonstrated for the first time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201808265 | DOI Listing |
Small
January 2025
eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Trivandrum, Kerala, 695551, India.
Iontronic memtransistors have emerged as technologically superior to conventional memristors for neuromorphic applications due to their low operating voltage, additional gate control, and enhanced energy efficiency. In this study, a side-gated iontronic organic memtransistor (SG-IOMT) device is explored as a potential energy-efficient hardware building block for fast neuromorphic computing. Its operational flexibility, which encompasses the complex integration of redox activities, ion dynamics, and polaron generation, makes this device intriguing for simultaneous information storage and processing, as it effectively overcomes the von Neumann bottleneck of conventional computing.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea.
Negative differential transconductance (NDT) devices have emerged as promising candidates for multivalued logic computing, and particularly for ternary logic systems. To enable computation of any ternary operation, it is essential to have a functionally complete set of ternary logic gates, which remains unrealized with current NDT technologies, posing a critical limitation for higher-level circuit design. Additionally, NDT devices typically rely on heterojunctions, complicating fabrication and impacting reliability due to the introduction of additional materials and interfaces.
View Article and Find Full Text PDFSmall
December 2024
Department of Intelligence Semiconductor and Engineering, Ajou University, Suwon, Republic of Korea.
Rapid expansion of digital information density has led to a growing demand for multi-valued logic (MVL) systems, which aim to minimize energy and time consumption for computations. Heterojunction transistors represent a class of device architectures for MVL circuits; however, partially layered structures can be realized only for vacuum-deposited organic and transferred 2D materials due to the constraints of patterning processes. In this study, a novel CuO/IGZO heterojunction-based ternary inverter is presented via a sol-gel technique and direct patterning process using a self-assembled monolayer (SAM).
View Article and Find Full Text PDFACS Nano
October 2024
Department of Electrical and Information Technology, Lund University, Lund 221 00, Sweden.
ACS Appl Mater Interfaces
September 2024
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.
Antiambipolar heterojunctions are regarded as a revolutionary technology in the fields of electronics and optoelectronics, enabling the switch between positive and negative transconductance within a single device, which is crucial for diverse logic circuit applications. This study pioneers a mixed-dimensional photodetector featuring antiambipolar properties, facilitated by the van der Waals integration of one-dimensional CdSSe nanowires and two-dimensional Te nanosheets. This antiambipolar device enables flexible control over carrier transport via gate voltage, thus paving new paths for future optoelectronic devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!