Sensory Characterization of Dominant Malawi Peanut Varieties After Roasting.

J Food Sci

Dept. of Food Science and Technology, The Univ. of Georgia, 1109 Experiment St, Griffin, GA, 30223, U.S.A.

Published: June 2019

Although sensory appeal influences peanut consumption, peanut varieties are mostly selected based on agronomic traits. As a result, the sensory properties of peanut varieties, especially in southern Africa, are not known. Therefore, the primary objective of the study was to determine the sensory properties of the Malawi peanut varieties and the volatile compounds associated with roasted peanut flavor. Six dominant Malawi peanut varieties (Chalimbana, CG7, Nsinjiro, Kakoma, Baka, and Chitala) were evaluated in this study. All peanut samples were shelled and then, roasted in a convection oven to reach medium doneness as indicated by the surface color lightness (L) value of approximately 50. A hybrid descriptive analysis (DA) was done to determine the sensory profile of the roasted peanuts. Volatile compounds were extracted from equilibrated ground peanut sample using headspace-solid phase microextraction technique and analyzed by GC-MS. Analysis of Variance (ANOVA) of the DA data showed significant differences (P < 0.05) in the sensory profiles of the peanut varieties. Nsinjiro and Baka had a significantly higher intensity of roasted peanutty aroma and flavor (P < 0.05). The GC-MS results showed that pyrazines and furans were the dominant volatile compounds but, their respective concentrations, in the evaluated peanut varieties, were significantly different (P < 0.05). Among the pyrazines, 2-ethyl-3,5-dimethyl pyrazine was strongly correlated with roasted peanutty flavor (r = 0.927) just like 2,5 dimethyl pyrazine (r = 0.916). Therefore, 2-ethyl-3,5-dimethyl pyrazine and 2,5-dimethyl pyrazine production pathways could provide more insights into the origins of roasted peanut flavor. PRACTICAL APPLICATION: The findings of this study can help food product developers, who have no access to sensory and analytical analyses, to identify Malawi peanut varieties that are suitable for various food applications. Furthermore, plant breeders could also use the findings to inform new projects aimed at improving the sensory properties of the peanut varieties.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.14641DOI Listing

Publication Analysis

Top Keywords

peanut varieties
36
malawi peanut
16
peanut
14
sensory properties
12
volatile compounds
12
varieties
9
sensory
8
dominant malawi
8
properties peanut
8
determine sensory
8

Similar Publications

Background: Antioxidants are widely recognized for their potential health benefits, including their impact on cognitive function and gut microbiome modulation. Understanding these effects is essential for exploring their broader clinical applications.

Objectives: This review aims to evaluate the effects of antioxidants on the gut microbiome and cognitive function, with a focus on findings from randomized controlled trials (RCTs).

View Article and Find Full Text PDF

Radio-sensitivity of selected namibian landrace groundnut (Arachis hypogaea L.) genotypes to gamma radiation.

J Environ Radioact

January 2025

Plant Breeding and Genetics Sub-programme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.

Groundnut (Arachis hypogaea L.) is a popular nutritious food crop in the world. In Namibia, groundnut varieties are limited and characterized by low yields of 0.

View Article and Find Full Text PDF

Transcriptional engineering for value enhancement of oilseed crops: a forward perspective.

Front Genome Ed

January 2025

Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India.

Plant-derived oils provide 20%-35% of dietary calories and are a primary source of essential omega-6 (linoleic) and omega-3 (α-linolenic) fatty acids. While traditional breeding has significantly increased yields in key oilseed crops like soybean, sunflower, canola, peanut, and cottonseed, overall gains have plateaued over the past few decades. Oilseed crops also experience substantial yield losses in both prime and marginal agricultural areas due to biotic and abiotic stresses and shifting agro-climates.

View Article and Find Full Text PDF

Chemical profile changes in Peanut seeds infected with aspergillus flavus via widely targeted metabolomics.

Food Chem

January 2025

Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, Guangdong Province 510640, China. Electronic address:

Peanut seeds are enriched with protein and fatty acids, making them susceptible to infection by Aspergillus flavus (A. flavus). The infected seeds are harmful to human health due to the aflatoxin contamination.

View Article and Find Full Text PDF

Genome-Wide Identification, Functional Characterization, and Stress-Responsive Expression Profiling of Subtilase () Gene Family in Peanut ( L.).

Int J Mol Sci

December 2024

Centre for Legume Plant Genetics and System Biology, School of Future Technology and Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Subtilases (SBTs), known as serine proteases or phytoproteases in plants, are crucial enzymes involved in plant development, growth, and signaling pathways. Despite their recognized importance in other plant species, information regarding their functional roles in cultivated peanut ( L.) remains sparse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!