We previously demonstrated that PACRG plays a role in regulating dynein-driven microtubule sliding in motile cilia. To expand our understanding of the role of PACRG in ciliary assembly and motility, we used a combination of functional and structural studies, including newly identified mutants. Using cryo-electron tomography we show that PACRG and FAP20 form the inner junction between the A- and B-tubule along the length of all nine ciliary doublet microtubules. The lack of PACRG and FAP20 also results in reduced assembly of inner-arm dynein IDA and the beak-MIP structures. In addition, our functional studies reveal that loss of PACRG and/or FAP20 causes severe cell motility defects and reduced in vitro microtubule sliding velocities. Interestingly, the addition of exogenous PACRG and/or FAP20 protein to isolated mutant axonemes restores microtubule sliding velocities, but not ciliary beating. Taken together, these studies show that PACRG and FAP20 comprise the inner junction bridge that serves as a hub for both directly modulating dynein-driven microtubule sliding, as well as for the assembly of additional ciliary components that play essential roles in generating coordinated ciliary beating.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727744PMC
http://dx.doi.org/10.1091/mbc.E19-01-0063DOI Listing

Publication Analysis

Top Keywords

pacrg fap20
16
microtubule sliding
16
inner junction
12
pacrg
8
fap20 form
8
form inner
8
doublet microtubules
8
dynein-driven microtubule
8
pacrg and/or
8
and/or fap20
8

Similar Publications

FAP20 is required for flagellum assembly in .

Mol Biol Cell

November 2024

Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095.

 is a human and animal pathogen that depends on flagellar motility for transmission and infection. The trypanosome flagellum is built around a canonical "9+2" axoneme, containing nine doublet microtubules (DMTs) surrounding two singlet microtubules. Each DMT contains a 13-protofilament A-tubule and a 10-protofilament B-tubule, connected to the A-tubule by a conserved, non-tubulin inner junction (IJ) filament made up of alternating PACRG and FAP20 subunits.

View Article and Find Full Text PDF

FAP20 is required for flagellum assembly in .

bioRxiv

January 2024

Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.

is a human and animal pathogen that depends on flagellar motility for transmission and infection. The trypanosome flagellum is built around a canonical "9+2" axoneme, containing nine doublet microtubules (DMTs) surrounding two singlet microtubules. Each DMT contains a 13-protofilament A-tubule and a 10-protofilament B-tubule, connected to the A-tubule by a conserved, non-tubulin inner junction (IJ) filament made up of alternating PACRG and FAP20 subunits.

View Article and Find Full Text PDF

Doublet microtubules of eukaryotic cilia and flagella are made up of a complete A- and an incomplete B-tubule that are fused together. Of the two fusion points, the outer junction is made of tripartite tubulin connections, while the inner junction contains non-tubulin elements. The latter includes flagellar-associated protein 20 (FAP20) and Parkin co-regulated gene protein (PACRG) that together link the A- and B-tubule at the inner junction.

View Article and Find Full Text PDF

We previously demonstrated that PACRG plays a role in regulating dynein-driven microtubule sliding in motile cilia. To expand our understanding of the role of PACRG in ciliary assembly and motility, we used a combination of functional and structural studies, including newly identified mutants. Using cryo-electron tomography we show that PACRG and FAP20 form the inner junction between the A- and B-tubule along the length of all nine ciliary doublet microtubules.

View Article and Find Full Text PDF

CLEM (correlative light and electron microscopy) is one of the powerful techniques to elucidate the localization and structure of the target proteins or their complexes in cell. First, target proteins labeled fluorescently can be searched using a fluorescence microscope, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!