In the present study, the cc‑006cpm8 novel colon cell line was established from a sample of right colorectal adenocarcinoma obtained from a woman with liver metastasis. It was possible to culture this cell line for ≥100 passages in vitro with vigorous growth. Morphologically, the cells grew as several layers with tight adhesion to the surface of the culture plate. The morphological, immunological and ultrastructural features of these cells suggested their epithelial origin. The characterization of this cell line indicated a doubling time of 27 h, a colony forming efficiency of 73.2% in semisolid media and a plate efficiency of 66.5% in liquid culture. The modal number of chromosomes was 50. In vivo, the cc‑006cpm8 cells underwent tumorigenesis in all nude mice used. Immunohistochemical analysis demonstrated that mutS homolog 2 (MSH2) and MSH6 were expressed; however, mutL homolog 1 and postmeiotic segregation 2 were downregulated in cc‑006cpm8 cells. To determine the mutation profile of the cell line analyzed, exome capture DNA sequencing was performed. The results revealed 20 hypermutated exons comprising single nucleotide polymorphisms, and insertion and deletions (InDels), including single nucleotide variants of mucin (MUC)19, MUC16, MUC12, filaggrin and AHNAK nucleoprotein 2, and InDels of β defensin‑126, microRNA‑3665, WNK lysine deficient protein kinase 1 and SLAIN motif‑containing protein 1. In addition, commonly mutated genes in colorectal cancer and exon mutations of genes in cc‑006cpm8 cells were analyzed, including adenomatous polyposis coli, tumor protein p53, Drosophila mothers against decapentaplegic 4, phosphatidylinositol‑4,5‑bisphosphate 3‑kinase catalytic subunit α and Kirsten rat sarcoma, and genes associated with the DNA mismatch repair pathway were investigated.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2019.4806DOI Listing

Publication Analysis

Top Keywords

cc‑006cpm8 cells
12
colorectal adenocarcinoma
8
single nucleotide
8
cell
5
cc‑006cpm8
5
cells
5
establishment characterization
4
characterization novel
4
novel cell
4
cell cc‑006cpm8
4

Similar Publications

Breast cancer remains the leading cause of mortality among women with cancer. This article delves into the intricate relationship between breast cancer and cancer stem cells (CSCs), emphasizing advanced methods for their identification and isolation. The key isolation techniques, such as the mammosphere formation assay, surface marker identification, Side Population assay, and Aldehyde Dehydrogenase assay, are critically examined.

View Article and Find Full Text PDF

Glycobiology of psoriasis: A review.

J Autoimmun

January 2025

Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No.38, Xueyuan Road, Haidian, Beijing, 100191, China. Electronic address:

Psoriasis is a chronic inflammatory skin disease with etiologies related to genetics, immunity, and the environment. It is characterized by excessive proliferation of keratinocytes and infiltration of inflammatory immune cells. Glycosylation is a post-translational modification of proteins that plays important roles in cell adhesion, signal transduction, and immune cell activation.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.

View Article and Find Full Text PDF

Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.

View Article and Find Full Text PDF

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!