Fetal growth restriction (FGR) is caused by placental insufficiency and can lead to short and long‑term neurodevelopmental delays. Taurine, one of the most abundant amino acids in the brain, is critical for the normal growth and development of the nervous system; however, the mechanistic role of taurine in neural growth and development remains unknown. The present study investigated the role of taurine in FGR. Specifically, we explored the proteomic profiles of fetal rats at 6 h postpartum by two‑dimensional difference gel electrophoresis combined with matrix assisted laser desorption ionization‑time‑of‑flight (TOF)/TOF tandem mass spectrometry; the findings were verified via reverse transcription‑quantitative polymerase chain reaction. A total of 31 differentially expressed protein spots were selected. Among these, 31 were matched, including dihydropyrimidinase‑related protein 2 and , CRK and peroxiredoxin 2. Functional analysis using the Gene Ontology database and Ingenuity Pathway Analysis demonstrated that the differentially expressed proteins were mainly associated with neuronal differentiation, 'metabolic process', 'biological regulation' and developmental processes. The present study identified several proteins that were differentially expressed in rats with FGR in the presence or absence of taurine administration. The results of the present study suggest a potential role for taurine in the treatment and prevention of FGR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6559329 | PMC |
http://dx.doi.org/10.3892/ijmm.2019.4182 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!