G-quadruplexes play various roles in multiple biological processes, which can be positive when a G4 is involved in the regulation of gene expression or detrimental when the folding of a stable G4 impairs DNA replication promoting genome instability. This duality interrogates the significance of their presence within genomes. To address the potential biased evolution of G4 motifs, we analyzed their occurrence, features and polymorphisms in a large spectrum of species. We found extreme bias of the short-looped G4 motifs, which are the most thermodynamically stable in vitro and thus carry the highest folding potential in vivo. In the human genome, there is an over-representation of single-nucleotide-loop G4 motifs (G4-L1), which are highly conserved among humans and show a striking excess of the thermodynamically least stable G4-L1A (G3AG3AG3AG3) sequences. Functional assays in yeast showed that G4-L1A caused the lowest levels of both spontaneous and G4-ligand-induced instability. Analyses across 600 species revealed the depletion of the most stable G4-L1C/T quadruplexes in most genomes in favor of G4-L1A in vertebrates or G4-L1G in other eukaryotes. We discuss how these trends might be the result of species-specific mutagenic processes associated to a negative selection against the most stable motifs, thus neutralizing their detrimental effects on genome stability while preserving positive G4-associated biological roles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614823 | PMC |
http://dx.doi.org/10.1093/nar/gkz463 | DOI Listing |
Nat Mater
January 2025
School of Physics, Zhejiang University, Hangzhou, China.
In ordered magnets, the elementary excitations are spin waves (magnons), which obey Bose-Einstein statistics. Similarly to Cooper pairs in superconductors, magnons can be paired into bound states under attractive interactions. The Zeeman coupling to a magnetic field is able to tune the particle density through a quantum critical point, beyond which a 'hidden order' is predicted to exist.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Chemistry, Handique Girls' College, Guwahati , 781001, Assam, India.
Context: Cation-π and cation-lone pair interactions between 3d-metal (II) ions [Fe(II), Co(II), Ni(II) and Cu(II)] and furan are explored in the formation of 1:1 and 1:2 type complexes. Both cation-π (IE = -192.27 to -312.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
Single atom alloys (SAAs) have gained tremendous attention as promising materials with unique physicochemical properties, particularly in catalysis. The stability of SAAs relies on the formation of a single active dopant on the surface of a metal host, quantified by the surface segregation and aggregation energy. Previous studies have investigated the surface segregation of non-ligated and ligated SAAs to reveal the driving forces underlying such phenomena.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, Jyväskylä, FI-40014, Finland.
Designing cost-effective electrocatalysts with fast reaction kinetics and high stability is an outstanding challenge in green hydrogen generation through overall water splitting (OWS). Layered double hydroxide (LDH) heterostructure materials are promising candidates to catalyze both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), the two OWS half-cell reactions. This work develops a facile hydrothermal route to synthesiz hierarchical heterostructure MoS@NiFeCo-LDH and MoS@NiFeCo-Mo(doped)-LDH electrocatalysts, which exhibit extremely good OER and HER performance as witnessed by their low IR-corrected overpotentials of 156 and 61 mV with at a current density of 10 mA cm under light assistance.
View Article and Find Full Text PDFACS Omega
January 2025
Laboratory of Theoretical Chemistry, Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter (NISM), University of Namur, rue de Bruxelles, 61, B-5000 Namur, Belgium.
Density functional theory (DFT) has been enacted to study the Diels-Alder reaction between 2,5-dimethylfuran (2,5-DMF), a direct product of biomass transformation, and acrolein and to analyze its thermodynamics, kinetics, and mechanism when catalyzed by a Lewis acid (LA), in comparison to the uncatalyzed reaction. The uncatalyzed reaction occurs via a typical one-step asynchronous process, corresponding to a normal electron demand (NED) mechanism, where acrolein is an electrophile whereas 2,5-DMF is a nucleophile. The small endo selectivity in solvents of low dielectric constants is replaced by a small exo selectivity in solvents with larger dielectric constants, such as DMSO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!