Studies were performed to investigate the irreversible binding and oxidative metabolism of propranolol in human liver microsomes and the relationship of binding and metabolism to the polymorphic oxidation of debrisoquine. Incubation of microsomes with 14C-labelled propranolol in the presence of a NADPH-generating system gave rise to irreversible binding which increased linearly with time and became saturated at high substrate concentrations. The extent of binding was decreased by the exclusion of cofactors, boiling, anaerobic conditions, and the addition of reduced glutathione and SKF-525A. Trichloropropene oxide had a negligible effect on cofactor-dependent binding. However, debrisoquine, antipyrine and phenacetin decreased binding to a considerable extent. The latter compound abolished cofactor-dependent binding completely at the concentration used (1 mM). Electrophoresis of microsomes which had been incubated with tritiated propranolol revealed that binding was probably occurring to a large number of proteins particularly in the 40,000-90,000 molecular weight range. Glutathione, debrisoquine and antipyrine did not inhibit the 4'-hydroxylation and N-deisopropylation of propranolol. In contrast, phenacetin exerted a very potent inhibitory action on both routes of metabolism. It is concluded that a product or products of propranolol oxidation bind irreversibly but non-selectively to human liver microsomal protein, the enzyme system responsible for the activation of propranolol appears to be related more closely to the cytochrome P-450 system which metabolizes phenacetin than to that metabolising debrisoquine, and radiolabelled propranolol is not a sufficiently specific probe for studying these cytochrome P-450 systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-2952(87)90592-2 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Laboratory of Biotechnology, National Higher School of Biotechnology, Ville Universitaire (University of Constantine 3), Ali Mendjeli, BP E66, Constantine 25100, Algeria.
Kynurenine aminotransferase II (KAT-II) is a target for treating several diseases characterized by an excess of kynurenic acid (KYNA). Although KAT-II inactivators are available, they often lead to adverse side effects due to their irreversible inhibition mechanism. This study aimed to identify potent and safe inhibitors of KAT-II using computational and in vitro approaches.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy.
Oxidative stress (OS), generated by the overrun of reactive species of oxygen and nitrogen (RONS), is the key cause of several human diseases. With inflammation, OS is responsible for the onset and development of clinical signs and the pathological hallmarks of Alzheimer's disease (AD). AD is a multifactorial chronic neurodegenerative syndrome indicated by a form of progressive dementia associated with aging.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Yunnan, China.
Currently, an effective treatment for spinal cord injury (SCI) is not available. Due to the irreversible primary injury associated with SCI, the prevention and treatment of secondary injury are very important. In the secondary injury stage, pyroptosis exacerbates the deterioration of the spinal cord injury, and inhibiting pyroptosis is beneficial for recovery from SCI.
View Article and Find Full Text PDFExp Eye Res
January 2025
Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. Electronic address:
The abrupt and substantial elevation of intraocular pressure (IOP) in acute glaucoma induces retinal ischemia/reperfusion (I/R) injury, resulting in progressive retinal ganglion cell (RGC) death and irreversible visual impairment. PANoptosis, a form of regulated cell death consisting of pyroptosis, apoptosis and necroptosis, is reported to be involved in high IOP-induced RGC death. However, the precise mechanisms of RGC death remain unclear, and neuroinflammation is considered to play a vital role.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis (NIRT), Chennai 600 031, India.
Host-directed therapies (HDTs) resolve excessive inflammation during tuberculosis (TB) disease, which leads to irreversible lung tissue damage. The peptide-based nanostructures possess intrinsic anti-inflammatory and antioxidant properties among HDTs. Native carnosine, a natural dipeptide with superior self-organization and functionalities, was chosen for nanoformulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!