Inhibition of BRD4 suppresses the malignancy of breast cancer cells via regulation of Snail.

Cell Death Differ

Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.

Published: January 2020

AI Article Synopsis

  • The study explores how BRD4, a protein involved in regulating genes, impacts cancer cell movement and processes like epithelial-mesenchymal transition (EMT) in breast cancer.
  • Inhibiting BRD4 leads to reduced cell migration, invasion, and tumor growth, particularly through lowering levels of the EMT transcription factor Snail by affecting its stability and expression.
  • The research suggests that BRD4's regulation of Snail involves interactions with Protein Kinase D1 and Gli1, and both BRD4 and Snail are associated with more aggressive forms of breast cancer, especially those lacking certain hormone receptors.

Article Abstract

The mechanistic action of bromodomain-containing protein 4 (BRD4) in cancer motility, including epithelial-mesenchymal transition (EMT), remains largely undefined. We found that targeted inhibition of BRD4 reduces migration, invasion, in vivo growth of patient-derived xenograft (PDX), and lung colonization of breast cancer (BC) cells. Inhibition of BRD4 rapidly decreases the expression of Snail, a powerful EMT transcription factor (EMT-TF), via diminishing its protein stability and transcription. Protein kinase D1 (PRKD1) is responsible for BRD4-regulated Snail protein stability by triggering phosphorylation at Ser11 of Snail and then inducing proteasome-mediated degradation. BRD4 inhibition also suppresses the expression of Gli1, a key transductor of Hedgehog (Hh) required to activate the transcription of SNAI1, in BC cells. The GACCACC sequence (-341 to -333) in the SNAI1 promoter is responsible for Gli1-induced transcription of SNAI1. Clinically, BRD4 and Snail levels are increased in lung-metastasized, estrogen receptor-negative (ER-), and progesterone receptor-negative (PR-) breast cancers and correlate with the expression of mesenchymal markers. Collectively, BRD4 can regulate malignancy of breast cancer cells via both transcriptional and post-translational regulation of Snail.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205888PMC
http://dx.doi.org/10.1038/s41418-019-0353-2DOI Listing

Publication Analysis

Top Keywords

inhibition brd4
12
breast cancer
12
cancer cells
12
malignancy breast
8
regulation snail
8
protein stability
8
transcription snai1
8
snail
6
brd4
6
inhibition
4

Similar Publications

PROTACs have emerged as a therapeutic modality for the targeted degradation of proteins of interest (POIs). Central to PROTAC technology are the E3 ligase recruiters, yet only a few of them have been identified due to the lack of ligandable pockets in ligases, especially among single-subunit ligases. We propose that binders of partner proteins of single-subunit ligases could be repurposed as new ligase recruiters.

View Article and Find Full Text PDF

Bromodomain and extra-terminal domain (BET) proteins, including BRD4, bind acetylated chromatin and co-activate gene transcription. A BET inhibitor, JQ1, prevents and reverses pathological cardiac remodeling in preclinical models of heart failure. However, the underlying cellular mechanisms by which JQ1 improves cardiac structure and function remain poorly defined.

View Article and Find Full Text PDF

Background: MYC-driven lymphomas are a subset of B-cell lymphomas characterized by genetic alterations that dysregulate the expression of the MYC oncogene. When overexpressed, typically through chromosomal translocations, amplifications, or other mechanisms, MYC can drive uncontrolled cell growth and contribute to cancer development. MYC-driven lymphomas are described as aggressive entities which require intensive treatment approaches and can be associated with poor prognosis.

View Article and Find Full Text PDF

To enhance the accuracy of virtual screening for bromodomain-containing protein 4 (BRD4) inhibitors, two docking protocols and seven scoring functions were compared. A total of 73 crystal structures of BRD4 (BD1) complexes were selected for analysis. Firstly, docking was carried out using both the LibDock and CDOCKER methods.

View Article and Find Full Text PDF

KMT2A-rearranged leukemias are a highly aggressive subset of acute leukemia, characterized by poor prognosis and frequent relapses despite intensive treatment. Menin inhibitors, which target the critical KMT2A-menin interaction driving leukemogenesis, have shown promise in early clinical trials. However, resistance to these inhibitors, often driven by menin mutations or alternative oncogenic pathways, remains a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!