Purpose: Genomic analyses of small-cell lung cancer (SCLC) are limited by the availability of tumor specimens. This study aimed to investigate the suitability of single-cell sequencing of circulating tumor cells (CTC) as a method of inferring the evolution and progression of SCLCs.

Experimental Design: Between July 1, 2011, and July 28, 2014, 48 consecutively diagnosed patients with SCLC were recruited for this study. CTCs were captured from each patient with CellSearch system. Somatic mutations and copy number alterations (CNA) were monitored by single-cell sequencing of CTCs during chemotherapy.

Results: Single-cell sequencing of CTCs can provide a mutational atlas for SCLC. A 10-CNA score based on single CTCs was established as a classifier for outcomes of initial chemotherapy in patients with SCLC. The survival analyses demonstrated that patients with low CNA scores (<0) had significantly prolonged progression-free survival (PFS) and overall survival (OS) after first-line chemotherapy in comparison with those with high scores (≥0; PFS: 212 days vs. 110.5 days, = 0.0042; and OS: 223.5 days vs. 424 days, = 0.0006). The positive predictive value and negative predictive value of the CNA score for clinical subtype (refractory vs. sensitive) were 80.0% and 93.7%, respectively. By tracing allele-specific CNAs in CTCs isolated at different time points during chemotherapy, we showed that CNA heterogeneity might result from allelic losses of initially consistent CNAs.

Conclusions: Single CTC-based sequencing can be utilized to depict the genomic profiles and evolutionary history of SCLC, thus offering the potential for clinical stratification of patients with SCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-18-3571DOI Listing

Publication Analysis

Top Keywords

single-cell sequencing
16
inferring evolution
8
evolution progression
8
small-cell lung
8
lung cancer
8
sequencing circulating
8
circulating tumor
8
tumor cells
8
patients sclc
8
sequencing ctcs
8

Similar Publications

Background: Immune cells within tumor tissues play important roles in remodeling the tumor microenvironment, thus affecting tumor progression and the therapeutic response. The current study was designed to identify key markers of plasma cells and explore their role in high-grade serous ovarian cancer (HGSOC).

Methods: We utilized single-cell sequencing data from the Gene Expression Omnibus (GEO) database to identify key immune cell types within HGSOC tissues and to extract related markers via the Seurat package.

View Article and Find Full Text PDF

Background: Tumor microenvironment (TME), particularly immune cell infiltration, programmed cell death (PCD) and stress, has increasingly become a focal point in colorectal cancer (CRC) treatment. Uncovering the intricate crosstalk between these factors can enhance our understanding of CRC, guide therapeutic strategies, and improve patient prognosis.

Methods: We constructed an immune-related cell death and stress (ICDS) prognostic model utilizing machine learning methodologies.

View Article and Find Full Text PDF

Multimodal learning for mapping genotype-phenotype dynamics.

Nat Comput Sci

January 2025

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

How complex phenotypes emerge from intricate gene expression patterns is a fundamental question in biology. Integrating high-content genotyping approaches such as single-cell RNA sequencing and advanced learning methods such as language models offers an opportunity for dissecting this complex relationship. Here we present a computational integrated genetics framework designed to analyze and interpret the high-dimensional landscape of genotypes and their associated phenotypes simultaneously.

View Article and Find Full Text PDF

Background: Keloid is a benign skin tumor that result from abnormal wound healing and excessive collagen deposition. The pathogenesis is believed to be linked to genetic predisposition and immune imbalance, although the precise mechanisms remain poorly understood. Current therapeutic approaches may not consistently yield satisfactory outcomes and are often accompanied by potential side effects and risks.

View Article and Find Full Text PDF

Classical tissue recombination experiments demonstrate that cell-fate determination along the anterior-posterior axis of the Müllerian duct occurs prior to postnatal day 7 in mice. However, little is known about how these cell types are maintained in adults. In this study, we provide genetic evidence that a balance between antagonistic retinoic acid (RA) and estrogen signaling activity is required to maintain simple columnar cell fate in adult uterine epithelium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!