Rapid removal of acesulfame potassium by acid-activated ferrate(VI) under mild alkaline conditions.

Chemosphere

Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A5B9, Canada. Electronic address:

Published: September 2019

Acesulfame potassium (ACE) is a widely used artificial sweetener that has consistently been detected in wastewater and surface waters. The high-valent iron-based green oxidant known as ferrate(VI) (potassium ferrate(VI); Fe(VI)) had low reactivity with ACE (i.e. 4 h (or 240 min) contact time removed only ∼ 67% ACE) at a molar ratio of 6.0 ([Fe(VI)]:[ACE]). Comparatively, it took 60 s (or 1 min) to remove ∼94% ACE when HCl (786 μM) was added to a mixture of Fe(VI)-ACE at the same molar ratio of 6.0 (or acid-activated Fe(VI)). Significantly, the final pH (i.e. 7.6-8.1) was similar for Fe(VI) and acid-activated Fe(VI). An empirical model using response surface methodology was developed that could describe reasonably well the removal efficiency of ACE. Inorganic constituents of wastewater (Cl, Na, Ca, and Mg) had no significant effect on the oxidation of ACE by acid-activated Fe(VI). The degradation efficiency of ACE decreased in the presence of 10 mg/L of natural organic matter (NOM) but remained unchanged at 5 mg NOM/L. Sulfamic acid as the oxidized product of ACE was identified by liquid chromatography high resolution mass spectrometry method. Reaction pathways include ring opening of ACE through hydrolytic transformation. Acid-activated Fe(VI) has advantage of rapid removal of ACE under mild alkaline conditions of wastewater treatment plants compared to other oxidation processes such as chlorination, ozonation, and light-based processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.05.069DOI Listing

Publication Analysis

Top Keywords

acid-activated fevi
16
ace
10
rapid removal
8
acesulfame potassium
8
mild alkaline
8
alkaline conditions
8
molar ratio
8
efficiency ace
8
fevi
6
acid-activated
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!