Nitrous acid (HONO) is an important precursor of hydroxyl radical (OH), which plays a key role in atmospheric chemistry. In this study, a shipboard-based measurement of HONO and related species in the offshore area of the East China Sea (ECS) was performed during June 2017. The HONO concentration ranged from 35 ppt to 1.95 ppb, with an average value of 0.44 ± 0.25 ppb during the entire campaign. HONO displayed a relatively higher level (0.48 ± 0.21 ppb) in the area within 30 km from the coastline (S1), whereas a lower level (0.40 ± 0.18 ppb) in the area between 30 km and 100 km from the coastline (S2). Five distinct hotspots of HONO were identified, including Ningbo Port, Yangshan Port, the Yangtze River estuary, northwest of the Zhoushan city, and the area adjacent to Jinshan Chemical Industry Park, suggesting the impact of local vessel emissions and land industrial emissions on HONO formation. During the nighttime, the direct vessel emissions contributed on average 18% of the HONO concentration. The averaged conversion frequency of NO-to-HONO (k) estimated from six nighttime cases was 1.18 × 10 h. Daytime budget analysis showed that the unknown HONO production rate (P) in S1 and S2 was 1.52 ppb h and 1.14 ppb h, respectively. P was related to a light-induced HONO source from NO on the sea surface and particulate nitrate. During the cruise campaign, the averaged daytime OH production rate from HONO photolysis was 1.35 ± 0.69 ppb h, about 1.6 times higher than that from the O photolysis (0.87 ± 0.55 ppb h), which suggested an important role of HONO in the atmospheric chemistry of the offshore area of ECS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.05.004 | DOI Listing |
Environ Sci Technol
January 2025
China Three Gorges Corporation, Beijing 100038, China.
With the rapid decline in the levelized cost, offshore wind power offers a new option for the clean energy transition of the power sector in China's coastal areas. Here, we develop a power system capacity expansion and operation optimization model to simulate the penetration of offshore wind power in China and quantify the associated health effects. We find that offshore wind power has great potential in mitigating the negative impacts of existing coal-fired power emissions.
View Article and Find Full Text PDFHeliyon
January 2025
Centre for Nature Positive Solutions, School of Science, STEM College, RMIT University, Melbourne, Australia.
Seaweed aquaculture is growing 8.9 % annually to a forecast US$ 22.13 billion in 2024 and has several environmental, economic and social co-benefits.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
Noctiluca scintillans is one of the most common harmful algal species worldwide. In this study, a MaxEnt model was constructed to calculate the present and future habitat suitability of N. scintillans in the China Sea.
View Article and Find Full Text PDFSci Total Environ
January 2025
Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; IBED, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands.
Grey mullets (family Mugilidae) are widespread across coastal, brackish, and freshwater habitats, and have supported fisheries for millennia. Despite their global distribution and commercial value, little is known about their movement ecology and its role in the co-existence of sympatric mullet species. Gaps in knowledge about migratory behaviour, seasonal occurrence, and movement scales have also impeded effective management, highlighting the need for further research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!