CRISPR/Cas9 guided genome and epigenome engineering and its therapeutic applications in immune mediated diseases.

Semin Cell Dev Biol

Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090, Vienna, Austria. Electronic address:

Published: December 2019

Recent developments in the nucleic acid editing technologies have provided a powerful tool to precisely engineer the genome and epigenome for studying many aspects of immune cell differentiation and development as well as several immune mediated diseases (IMDs) including autoimmunity and cancer. Here, we discuss the recent technological achievements of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based RNA-guided genome and epigenome editing toolkit and provide an insight into how CRISPR/Cas9 (CRISPR Associated Protein 9) toolbox could be used to examine genetic and epigenetic mechanisms underlying IMDs. In addition, we will review the progress in CRISPR/Cas9-based genome-wide genome and epigenome screens in various cell types including immune cells. Finally, we will discuss the potential of CRISPR/Cas9 in defining the molecular function of disease associated SNPs overlapping gene regulatory elements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2019.05.007DOI Listing

Publication Analysis

Top Keywords

genome epigenome
16
immune mediated
8
mediated diseases
8
crispr/cas9 guided
4
genome
4
guided genome
4
epigenome
4
epigenome engineering
4
engineering therapeutic
4
therapeutic applications
4

Similar Publications

Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior.

View Article and Find Full Text PDF

Spatial monoomics has been recognized as a powerful tool for exploring life sciences. Recently, spatial multiomics has advanced considerably, which could contribute to clarifying many biological issues. Spatial monoomics techniques in epigenomics, genomics, transcriptomics, proteomics, and metabolomics can enhance our understanding of biological functions and cellular identities by simultaneously measuring tissue structures and biomolecule levels.

View Article and Find Full Text PDF

Prion disease is a fatal neurodegenerative disease caused by the misfolding of prion protein (PrP) encoded by the PRNP gene. While there is currently no cure for the disease, depleting PrP in the brain is an established strategy to prevent or stall templated misfolding of PrP. Here we developed in vivo cytosine and adenine base strategies delivered by adeno-associated viruses to permanently modify the PRNP locus to achieve PrP knockdown in the mouse brain.

View Article and Find Full Text PDF

Introduction: Bipolar 2 disorder (BD2) is an independent disease with specific familial aggregation, significant functional impairment, specific treatment challenges and several distinctive clinical features. However, unlike bipolar 1 disorder, studies investigating causal and functional genes are lacking. This study aims to identify and prioritize causal genetic variants and genes for BD2 by analyzing brain-specific gene expression markers, to improve the understanding of its genetic underpinnings and support advancements in diagnosis, treatment and prognosis.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) complications pose a significant global health challenge. Omics technologies have been employed to investigate these complications and identify the biological pathways involved. In this review, we focus on four major T2D complications: diabetic kidney disease, diabetic retinopathy, diabetic neuropathy, and cardiovascular complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!