The mammalian target of rapamycin complex 1 (mTORC1) regulates cell growth, metabolism, and autophagy. Extensive research has focused on pathways that activate mTORC1 like growth factors and amino acids; however, much less is known about signaling cues that directly inhibit mTORC1 activity. Here, we report that G-protein coupled receptors (GPCRs) paired to Gα proteins increase cyclic adenosine 3'5' monophosphate (cAMP) to activate protein kinase A (PKA) and inhibit mTORC1. Mechanistically, PKA phosphorylates the mTORC1 component Raptor on Ser 791, leading to decreased mTORC1 activity. Consistently, in cells where Raptor Ser 791 is mutated to Ala, mTORC1 activity is partially rescued even after PKA activation. Gα-coupled GPCRs stimulation leads to inhibition of mTORC1 in multiple cell lines and mouse tissues. Our results uncover a signaling pathway that directly inhibits mTORC1, and suggest that GPCRs paired to Gα proteins may be potential therapeutic targets for human diseases with hyperactivated mTORC1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529218PMC
http://dx.doi.org/10.7554/eLife.43038DOI Listing

Publication Analysis

Top Keywords

mtorc1 activity
12
mtorc1
11
inhibits mtorc1
8
inhibit mtorc1
8
gpcrs paired
8
paired gα
8
gα proteins
8
raptor ser
8
ser 791
8
gpcr signaling
4

Similar Publications

MAIT Cell-Mediated Immune Mechanisms of Dialysis-Induced Peritoneal Fibrosis and Therapeutic Targeting.

J Am Soc Nephrol

January 2025

Nephrology Division, Department of Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.

Background: Peritoneal fibrosis is a serious complication of long-term peritoneal dialysis (PD) and abdominal surgeries, yet effective treatments remain elusive. Given the known roles of mucosal-associated invariant T (MAIT) cells in immune responses and fibrotic diseases, we investigated their involvement in PD-induced peritoneal fibrosis to identify potential therapeutic targets.

Methods: We employed single-cell RNA sequencing (scRNA-seq) and flow cytometry to characterize the activation and function of peritoneal MAIT cells in patients undergoing long-term PD.

View Article and Find Full Text PDF

SHOC2 plays an oncogenic or tumor-suppressive role by differentially targeting the MAPK and mTORC1 signals in liver cancer.

Life Med

June 2024

Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China.

SHOC2 is a scaffold protein that activates the RAS-MAPK signal. Our recent study showed that SHOC2 is also a negative regulator of the mTORC1 signal in lung cancer cells. Whether and how SHOC2 differentially regulates the RAS-MAPK vs.

View Article and Find Full Text PDF

Hepatic lipotoxicity, resulting from excessive lipid accumulation in hepatocytes, plays a central role in the pathogenesis of various metabolic liver diseases. Despite recent progress, the precise mechanisms remain incompletely understood. Employing excessive exposure to palmitate in hepatocytes as our primary experimental model and mice studies, we aimed to uncover the mechanisms behind hepatic lipotoxicity, thereby developing potential treatments.

View Article and Find Full Text PDF

Sulforaphane acutely activates multiple starvation response pathways.

Front Nutr

January 2025

Aging and Metabolism Research Program, Oklahoma City, OK, United States.

Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has demonstrated anti-cancer, anti-microbial and anti-oxidant properties. SFN ameliorates various disease models in rodents (e.g.

View Article and Find Full Text PDF

Pathological cardiac remodeling is a maladaptive response that leads to changes in the size, structure, and function of the heart. These changes occur due to an acute or chronic stress on the heart and involve a complex interplay of hemodynamic, neurohormonal and molecular factors. As a critical regulator of cell growth, protein synthesis and autophagy mechanistic target of rapamycin complex 1 (mTORC1) is an important mediator of pathological cardiac remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!