The fabrication of block copolymer (BCP) vesicles with controlled membrane permeability and promising stability remains a considerable challenge. Herein, a new type of pH-responsive and self-crosslinked vesicle based on a hydrolytically hindered urea bond is reported. This kind of vesicle is formed by the self-assembly of a pH-responsive and hydrolytically self-crosslinkable copolymer poly(ethylene glycol)-block-poly[2-(3-(tert-butyl)-3-ethylureido)ethyl methacrylate-co-2-(diethylamino)ethyl methacrylate] (PEG-b-P(TBEU-co-DEA)). The BCP can be easily synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(3-(tert-butyl)-3-ethylureido)ethyl methacrylate (TBEU) and 2-(diethylamino)ethyl methacrylate (DEA) using PEG-based macro-chain transfer agent. The copolymer could self-assemble into stable vesicles by the hydrophobic interaction and in situ cross-linking between amines and isocyanates after the hydrolysis of the hindered urea bonds without any catalyst. Dynamic light scattering (DLS) studies show that the vesicles exhibit enhanced stability against the dilution of organic solvent, and the size can be adjusted through the change of pH values. Moreover, the alkaline phosphatase-loaded vesicles can act as nano-reactor and enable free diffusion of small molecules into the vesicles, followed by the significantly improved fluorescence intensity of phosphate-caged fluorescein. This self-crosslinking and pH-sensitive vesicles may serve as a smart platform in controlled drug delivery and molecular reactor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.201900149 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Urea is an important biomarker for diagnosing various kidney and liver disorders. However, many existing methods rely on invasive blood sampling, which can potentially harm patients. Saliva has been recently recognized as a noninvasive and easily collectible alternative to blood for urea quantification.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, China.
Background: () infection is a prevalent disease encountered in military internal medicine and recognized as the main cause of dyspepsia, gastritis, and peptic ulcer, which are common diseases in military personnel. Current guidelines in China state all patients with evidence of active infection with are offered treatment. However, the prevalence of infection and its regional distribution in the military population remain unclear, which hinders effective prevention and treatment strategies.
View Article and Find Full Text PDFSmall
January 2025
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.
Nickel hydroxide (Ni(OH)) is considered to be one of the most promising electrocatalysts for urea oxidation reaction (UOR) under alkaline conditions due to its flexible structure, wide composition and abundant 3D electrons. However, its slow electrochemical reaction rate, high affinity for the reaction intermediate *COOH, easy exposure to low exponential crystal faces and limited metal active sites that seriously hinder the further improvement of UOR activities. Herein it is reported electrocatalyst composed of rich oxygen-vacancy (O) defects with amorphous SeO-covered Ni(OH) (O-SeO/Ni(OH)).
View Article and Find Full Text PDFSmall Methods
January 2025
Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China.
Urea-assisted water splitting is a promising energy-saving hydrogen (H) production technology. However, its practical application is hindered by the lack of high-performance bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). Herein, a heterostructured catalyst comprising highly active NiSe and NiSe, along with a conductive graphene-coated nickel foam skeleton (NiSe-NiSe/GNF) is reported.
View Article and Find Full Text PDFWater Res
January 2025
Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, PR China; Chongqing Research Institute, Jilin University, 401120 Chongqing, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, PR China. Electronic address:
Efficient nutrient recovery from source-separated urine is vital for wastewater treatment, with microalgae as a promising solution. However, bisphenol A (BPA) in urine can hinder microalgal resource recovery and pose water quality risks. The role of plant hormones in enhancing microalgal growth and pollutant removal is known, but their impact on BPA-laden urine treatment is not well-studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!