Human epidermal growth factor receptor 2 (HER2/erbB2) is a key driver and therapeutic target for breast cancer. The treatment of HER2-positive breast cancer remains a clinical challenge largely due to the limited understanding of HER2-driving oncogenic signaling and the frequent resistance to simply HER2-targeted therapy. Here, we show that the histone deacetylase inhibitor, trichostatin A (TSA), suppresses HER2-overexpressing breast cancer via upregulation of miR-146a and the resultant repression of its oncogenic targets, interleukin-1 receptor-associated kinase 1 and the chemokine receptor CXCR4. Mechanistically, histone H3K56 acetylation and deacetylation on the MIR146A promoter are catalyzed respectively by the acetyltransferase p300 and histone deacetylase 1 (HDAC1), both of which are recruited to the genomic loci by the transcription factor specificity protein 1 (Sp1). HER2 signaling phosphorylates Sp1 and induces its predominant association with HDAC1, but not p300, leading to histone hypoacetylation and silencing of MIR146A. In addition, the death receptor Fas is similarly downregulated by the aforementioned epigenetic paradigm, indicating its wide involvement in impairing tumor suppressor gene expression. Consequently, TSA synergizes with lapatinib, a tyrosine kinase inhibitor of HER2, to suppress breast cancer in vitro and in rodent models. These findings demonstrate a novel mechanism of HER2-driven carcinogenesis and suggest the applicability of combined HER2 and HDAC targeting in breast cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.32425DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
her2-overexpressing breast
8
histone deacetylase
8
breast
6
cancer
6
sp1-mediated epigenetic
4
epigenetic dysregulation
4
dysregulation dictates
4
dictates hdac
4
hdac inhibitor
4

Similar Publications

Breast cancer remains the leading cause of mortality among women with cancer. This article delves into the intricate relationship between breast cancer and cancer stem cells (CSCs), emphasizing advanced methods for their identification and isolation. The key isolation techniques, such as the mammosphere formation assay, surface marker identification, Side Population assay, and Aldehyde Dehydrogenase assay, are critically examined.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.

View Article and Find Full Text PDF

Purpose: Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers.

Methods: Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency.

View Article and Find Full Text PDF

Background: We aimed to investigate the clinical and molecular characteristics of different degrees of human epidermal growth factor receptor 2 (HER2) protein expression in HER2-negative breast cancer and the related factors affecting the efficacy of neoadjuvant chemotherapy in HER2-low breast cancer patients.

Methods: The study endpoint was pathological complete remission (PCR). Blood specimens and fresh cancer tissue samples were collected before neoadjuvant chemotherapy for whole-exon sequencing (WES) and RNA sequencing (RNA-seq), and patients were divided into a human epidermal growth factor receptor 2 (HER2)-low group and a HER2-0 group according to their HER2 expression status via bioinformatics analysis.

View Article and Find Full Text PDF

This study aimed to evaluate the efficacy of pyrotinib, an orally administered small molecule tyrosine kinase inhibitor, combined with neoadjuvant chemotherapy in treating patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Pyrotinib works by inhibiting the HER2 signaling pathway, thereby preventing tumor cell growth. This single-arm clinical trial aimed to assess the total pathological complete response (tpCR; ypT0/is and ypN0) rate as the primary endpoint.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!