Root development and its response to environmental changes is crucial for whole plant adaptation. These responses include changes in transcript levels. Here, we show that the alternative polyadenylation (APA) of mRNA is important for root development and responses. Mutations in FIP1, a component of polyadenylation machinery, affects plant development, cell division and elongation, and response to different abiotic stresses. Salt treatment increases the amount of poly(A) site usage within the coding region and 5' untranslated regions (5'-UTRs), and the lack of FIP1 activity reduces the poly(A) site usage within these non-canonical sites. Gene ontology analyses of transcripts displaying APA in response to salt show an enrichment in ABA signaling, and in the response to stresses such as salt or cadmium (Cd), among others. Root growth assays show that fip1-2 is more tolerant to salt but is hypersensitive to ABA or Cd. Our data indicate that FIP1-mediated alternative polyadenylation is important for plant development and stress responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.14416 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115.
The cytoplasmic membrane of bacteria is composed of a phospholipid bilayer made up of a diverse set of lipids. Phosphatidylglycerol (PG) is one of the principal constituents and its production is essential for growth in many bacteria. All the enzymes required for PG biogenesis in have been identified and characterized decades ago.
View Article and Find Full Text PDFTree Physiol
January 2025
Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
Modulation of stomatal development and movement is a promising approach for creating water-conserving plants. Here, we identified and characterized the PagHCF106 gene of poplar (Populus alba × Populus glandulosa). The PagHCF106 protein localized predominantly to the chloroplast, and the PagHCF106 gene exhibited tissue-specific expression pattern.
View Article and Find Full Text PDFTree Physiol
January 2025
Special Research Incubator Unit of Fermentomics, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.
Phytophthora palmivora, an oomycete pathogen, induces leaf fall disease in rubber trees (Hevea brasiliensis), causing significant economic losses. Effective disease management requires an understanding metabolic dynamics during infection. This study employed untargeted metabolomic and proteomic analyses to investigate the response of rubber seedling leaves to P.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, Yunnan, China.
Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-kharj, Saudi Arabia.
The Tapetum Determinant 1 (TPD1) family proteins are known to play a crucial role in the regulation of reproduction in plants, including Cenchrus americanus (pearl millet). However, members of TPD1 family proteins have not been fully identified. The current study aims to identify and characterize the TPD1 family proteins in Cenchrus americanus (L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!