In recent years, labile phosphorylation sites on arginine, histidine, cysteine, and lysine as well as pyrophosphorylation of serine and threonine have gained more attention in phosphoproteomic studies. However, the analysis of these delicate posttranslational modifications via tandem mass spectrometry remains a challenge. Common fragmentation techniques such as collision-induced dissociation (CID) and higher energy collisional dissociation (HCD) are limited due to extensive phosphate-related neutral loss. Electron transfer dissociation (ETD) has shown to preserve labile modifications, but is restricted to higher charge states, missing the most prevalent doubly charged peptides. Here, we report the ability of electron transfer/higher energy collisional dissociation (EThcD) to fragment doubly charged phosphorylated peptides without losing the labile modifications. Using synthetic peptides that contain phosphorylated arginine, histidine, cysteine, and lysine as well as pyrophosphorylated serine residues, we evaluated the optimal fragmentation conditions, demonstrating that EThcD is the method of choice for unambiguous assignment of tryptic, labile phosphorylated peptides. Graphical Abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13361-019-02240-4 | DOI Listing |
J Chem Phys
December 2024
Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi 830017, China.
The collisional energy transfer between vibrational excited H2(1, 7) and CO2 was investigated by exciting H2 to a vibrational excited state of v = 1, J = 7 by the stimulated Raman scattering technique. The coherent anti-Stokes Raman spectroscopy (CARS) technique determined that H2 was excited to the H2(1, 7) state. Varying the cuvette temperature, the number of H2(1, 7) particles was found to increase with the increase in H2 molar ratio α by scanning the intensity of the CARS spectrum, with peaks at different α at a temperature of 363 ± 15 K, but the peak temperature was not sensitive to α.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, F-35000 Rennes, France.
Chloronium (HCl) is an important intermediate of Cl-chemistry in space. The accurate knowledge of its collisional properties allows a better interpretation of the corresponding observations in interstellar clouds and, therefore, a better estimation of its abundance in these environments. While the ro-vibrational spectroscopy of HCl is well-known, the studies of its collisional excitation are rather limited and these are available for the interaction with helium atoms only.
View Article and Find Full Text PDFEur J Mass Spectrom (Chichester)
January 2025
QuantumSIMM, Kangra, HP, India.
Phthalate esters, frequently used as plasticizers in consumer products, raise concerns because of potential health effects. Using density functional theory (DFT) with BLYP and 6-311++G(d, p) basis sets, their properties, such as dipole moment, polarizability, proton affinity and ionization energy of phthalate esters are obtained. Reaction kinetics and thermodynamics of popular reagent ions like HO, NH, NO and O are computed to know the feasibility of the reactions with such ions.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2024
Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea. Electronic address:
Chinese hamster ovary (CHO)-K1 cells are widely used in biomedical research relevant to cancer, toxicity screening, and viruses, as well as in the production of recombinant proteins for biopharmaceuticals. In this study, liquid chromatography (LC)-electrospray ionization (ESI)-higher energy collisional dissociation (HCD)-tandem mass spectrometry (MS/MS) was used to characterize the surface and lysate N-glycans of CHO-K1 cells and analyze their structures. The relative quantity (%) of each N-glycan and absolute quantity (pmol) of total N-glycans were also obtained.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Radical-radical reaction channels are important in the pyrolysis and oxidation chemistry of perfluoroalkyl substances (PFAS). In particular, unimolecular dissociation reactions within unbranched -perfluoroalkyl chains, and their corresponding reverse barrierless association reactions, are expected to be significant contributors to the gas-phase thermal decomposition of families of species such as perfluorinated carboxylic acids and perfluorinated sulfonic acids. Unfortunately, experimental data for these reactions are scarce and uncertain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!