In a previous study, a phantom study of a contrast agent extraction system with computed tomography (CT) number and raw-data-based electron density (ED) was described. The current study improved this system with monochromatic CT (mCT) number and evaluated an anthropomorphic phantom for delineation of the contrast-enhanced region. Dual-energy CT images were scanned with a tissue-equivalent phantom and an anthropomorphic phantom with an iodinated contrast agent (1-130 mg/mL). The 40, 70, and 130 keV mCT images were reconstructed with 80 and 135 kV CT images. The contrast agent was separated from other materials using the gradient of the mCT number (GmCT) and the threshold mCT numbers. The system was analyzed using in-house software with Python. The evaluation of the accuracy for the contrast agent extraction was performed by measuring the ratio of the volume (ROV). The mCT number of the contrast agent and bone materials, liver, and muscle in the tissue-equivalent phantom was obviously greater than - 78 HU. The deviation of the mCT numbers between bone materials in tissue-equivalent phantom and the contrast agent were larger than 8 HU. The GmCT was within 4.0 in the tissue-equivalent phantom and more than 6.0 in the contrast agent. The ROV was 0.97-1.00 at more than 1 mg/mL contrast agent. Improved the contrast agent extraction system could be used for a patient's CT image. It could extract the iodinated tumor or lesion automatically. The contrast agent extraction system was improved by the mCT number. It is expected to only extract the contrast-enhanced region automatically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13246-019-00762-5 | DOI Listing |
Med Phys
January 2025
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan.
Background: The use of iodinated contrast-enhancing agents in computed tomography (CT) improves the visualization of relevant structures for radiotherapy treatment planning (RTP). However, it can lead to dose calculation errors by incorrectly converting a CT number to electron density.
Purpose: This study aimed to propose an algorithm for deriving virtual non-contrast (VNC) electron density from dual-energy CT (DECT) data.
Int J Biol Macromol
January 2025
College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; Gansu Engineering Research Center of High Value-added Utilization of Distinctive Agricultural Products, Lanzhou 730070, China. Electronic address:
The polysaccharide chitosan possesses broad-spectrum antimicrobial properties and has proven effective in controlling various postharvest diseases in fruits. Nevertheless, the fundamental mechanisms underlying its action remain unclear. In this study, the antifungal effects of chitosan with different molecular weights against Fusarium avenaceum, a pathogen causing root rot in Angelica sinensis, were evaluated.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil Engineering, City College of New York, New York, NY 10031, United States.
Odor emissions, primarily from anthropogenic activities like waste treatment and industrial processes, pose significant challenges in urban areas, particularly near water resource recovery facilities. While these emissions are generally not toxic, they can adversely affect community wellbeing and investment, prompting stricter regulations in some regions. For example, New York State's hydrogen sulfide guidelines are more stringent than federal standards.
View Article and Find Full Text PDFRadiol Clin North Am
March 2025
Radiology Department, Northwestern University Feinberg School of Medicine, Arkes Pavilion, 676 North St Clair Street, Suite 800, Chicago, IL 60611, USA. Electronic address:
Cardiac MR imaging and pulmonary MR angiography (MRA) are important clinical tools for the assessment of pulmonary vascular diseases. There are evolving noncontrast and contrast-enhanced techniques to evaluate pulmonary vasculature. Pulmonary MRA is a feasible imaging alternative to CTA in pulmonary embolism detection.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!