Cyanide is one of the most poisonous substances in the environment, which may have originated from natural and anthropogenic sources. There are many enzymes produced by microorganisms which can degrade and utilize cyanide. The major byproducts of cyanide degradation are alanine, glutamic acid, alpha-amino-butyric acid, beta-cyanoalanine, pterin etc. These products have many pharmaceutical and medicinal applications. For the degradation of cyanide, microbes produce necessary cofactors which catalyze the degradation pathways. Pterin is one of the cofactors for cyanide degradation. There are many pathways involved for the degradation of cyanide, cyanate, and thiocyanate. Some of the microorganisms possess resistance to cyanide, since they have developed adaptive alternative pathways for the production of ATP by utilization of cyanide as carbon and nitrogen sources. In this review, we summarized different enzymes, their mechanisms, and corresponding pathways for the degradation of cyanide and production of pterins during cyanide degradation. We aim to enlighten different types of pterin, its classification, and biological significance through this literature review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-019-01694-9 | DOI Listing |
Sci Rep
January 2025
Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Phuttamonthon 4 Road, Nakhon Pathom, 73170, Thailand.
A set of nCN/WO composites was synthesized through a simple thermal treatment for gold recovery from the simulated effluent of a non-cyanide-based plating bath. The obtained results exhibited that all nCN/WO composites demonstrated a higher photocatalytic activity for gold recovery than their pristine components due to the formation of nanocomposites which paved a convenient pathway for charge transfer. Among all synthesized composites, the 5.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an 716000, China.
As the antibiotic resistance of pathogens becomes increasingly severe, it is becoming more feasible to use methods that suppress the virulence of pathogens rather than exerting selective pressure on their growth. , a dangerous opportunistic pathogen, infects hosts by producing multiple virulence factors, which are regulated by quorum-sensing (QS) systems, including the systems, systems, and systems. This study used the chromosome transcription fusion reporter model to screen the traditional Chinese medicine monomer library and found that bakuchiol can effectively inhibit the system and related virulence phenotypes of , including the production of virulence factors (pyocyanin, hydrogen cyanide, elastase, and lectin) and motility (swarming, swimming, and twitching motility) without affecting its growth.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
The lily is a globally popular cut flower, and managing dormancy in lily bulblets is essential for continuous, year-round production. While nitric oxide (NO) has been shown to influence seed dormancy and germination, its role in dormancy release in lilies was previously unconfirmed. In this study, we investigated the effects of NO on dormancy release in lily bulblets using SNP and c-PTIO.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
This research presents a simple procedure for chemically modifying yeast () cells with nickel hexacyanoferrate (NiHCF) and ferric hexacyanoferrate, also known as Prussian blue (PB), to increase the conductivity of the yeast cell wall. Using linear sweep voltammetry, NiHCF-modified yeast and PB-modified yeast (NiHCF/yeast and PB/yeast, respectively) were found to have better cell wall conductivity in [Fe(CN)] and glucose-containing phosphate-buffered solution than unmodified yeast. Spectrophotometric analysis showed that the modification of yeast cells with NiHCF had a less harmful effect on yeast cell viability than the modification of yeast cells with PB.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, 150040, Hei-longjiang, China.
The roots of Panax ginseng C. A. Meyer (ginseng) are one of the traditional medicinal herbs in Asian countries and is known as the "king of all herbs".
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!