Purpose: The neural processing of children with overweight/obesity (CWO), may affect their eating behavior. We investigated the visual information processing of CWO under response control condition, by event-related potential (ERP) study, an electrophysiologic study for cognitive mechanism.
Methods: Seventeen CWO (mean age: 10.6±1.9), and 17 age-matched non-obese children (NOC), participated in the study. Neurocognitive function tests and visual ERP under Go/NoGo conditions, were implemented. Area amplitudes of major ERP components (P1, N1, P2, N2, and P3) from four scalp locations (frontal, central, parietal, and occipital), were analyzed.
Results: For Go and NoGo conditions, CWO had significantly greater occipital P1, fronto-central N1, and P2 amplitudes compared with NOC. P2 amplitude was significantly greater in CWO, than in NOC, at the frontal location. N2 amplitude was not significantly different, between CWO and NOC. For CWO and NOC, Go P3 amplitude was highest at the parietal location, and NoGo P3 amplitude was highest at the frontal location. In Go and NoGo conditions, P3 amplitude of CWO was significantly less than in NOC.
Conclusion: The greater P1, N1, and P2 suggested hyper-vigilance to visual stimuli of CWO, but the smaller P3 suggested insufficient mental representation of them. Such altered visual processing, may affect the eating behavior of CWO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506426 | PMC |
http://dx.doi.org/10.5223/pghn.2019.22.3.249 | DOI Listing |
Pediatr Gastroenterol Hepatol Nutr
May 2019
Department of Pediatrics, Hanyang University University Guri Hospital, Guri, Korea.
Purpose: The neural processing of children with overweight/obesity (CWO), may affect their eating behavior. We investigated the visual information processing of CWO under response control condition, by event-related potential (ERP) study, an electrophysiologic study for cognitive mechanism.
Methods: Seventeen CWO (mean age: 10.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!