AI Article Synopsis

Article Abstract

Background: Feeding habits are central to animal ecology, but it is often difficult to characterize the diet of organisms that are arboreal, nocturnal, rare, or highly mobile. Genetic analysis of gut contents is a promising approach for expanding our understanding of animal feeding habits. Here, we adapt a laboratory protocol for extracting and sequencing plant material from gut contents and apply it to Neotropical forest katydids (Orthoptera: Tettigoniidae) on Barro Colorado Island (BCI) in Panama.

Methods: Our approach uses three chloroplast primer sets that were previously developed to identify vegetation on BCI. We describe the utility and success rate of each primer set. We then test whether there is a significant difference in the amplification and sequencing success of gut contents based on the size or sex of the katydid, the time of day that it was caught, and the color of the extracted gut contents.

Results: We find that there is a significant difference in sequencing success as a function of gut color. When extracts were yellow, green, or colorless the likelihood of successfully amplifying DNA ranged from ~30-60%. When gut extracts were red, orange, or brown, amplification success was exceptionally low (0-8%). Amplification success was also higher for smaller katydids and tended to be more successful in katydids that were captured earlier in the night. Strength of the amplified product was indicative of the likelihood of sequencing success, with strong bands having a high likelihood of success. By anticipating which samples are most likely to succeed, we provide information useful for estimating the number of katydids that need to be collected and minimizing the costs of purifying, amplifying, and sequencing samples that are unlikely to succeed. This approach makes it possible to understand the herbivory patterns of these trophically important katydids and can be applied more broadly to understand the diet of other tropical herbivores.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501762PMC
http://dx.doi.org/10.7717/peerj.6808DOI Listing

Publication Analysis

Top Keywords

gut contents
12
sequencing success
12
plant material
8
feeding habits
8
amplification success
8
samples succeed
8
success
7
katydids
6
gut
6
sequencing
5

Similar Publications

First evidence of human infection by the kinetoplastid flagellate Dimastigella trypaniformis in a patient with urinary tract infection.

Int J Infect Dis

January 2025

Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. Electronic address:

We present a case of an 88-year-old man with symptoms consistent with a urinary tract infection, whose diagnostic workup uncovered a previously unrecognized motile flagellated protozoan. Molecular identification confirmed the organism as Dimastigella trypaniformis, a free-living kinetoplastid from the Rhynchomonadidae family. Known only from soil samples in Scotland and termite gut contents in Australia and Germany, Dimastigella trypaniformis has not been previously reported to infect vertebrate hosts.

View Article and Find Full Text PDF

Bee population decline is associated with various stressors, including exposure to pollutants. Among these, titanium dioxide (TiO), an emerging nanoparticle (NP) pollutant, potentially affects living organisms, including bees. This study evaluates the impact of TiO NPs ingestion (1.

View Article and Find Full Text PDF

The present study investigated the impact of butyrate glycerides (BG) on lipid metabolism, intestinal morphology, and microbiota of laying hens. Four hundred eighty 54-week-old Hy-line Brown laying hens were randomly selected and divided into five groups. The control group (ND) was fed a basal diet.

View Article and Find Full Text PDF

Polysaccharide Modulates Characteristic Bacteria and Metabolites, Improving the Immune Function of Healthy Mice.

Nutrients

January 2025

State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.

Objectives: Polysaccharides from are known to have several bioactive effects. Previous studies have found that low-molecular-weight polysaccharide (GP1) is degraded by and promotes the production of beneficial bacteria and metabolites, which improves immune disorder and intestinal injury, and then enhances the body's immune regulation ability. However, the immune regulation effect of GP1 on a healthy body has not been studied.

View Article and Find Full Text PDF

Anti-Fatigue Activity of Corn Protein Hydrolysate Fermented by Lactic Acid Bacteria.

Nutrients

January 2025

Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China.

Objectives: This study aimed to clarify the effect of lactic acid bacteria-fermented corn protein hydrolysate (FCH) on fatigue in mice and explore the connection between fatigue-related indicators and intestinal microbial flora.

Methods: The fatigue model of mice was constructed by exercise endurance experiment. The anti-fatigue level of FCH was evaluated by measuring physiological and biochemical indexes in mouse serum, liver and skeletal muscle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!