Unlabelled: Heterothermic mammals can use torpor, a state of metabolic suppression, to conserve energy during times of limited food and poor environmental conditions. Females may use torpor throughout gestation and lactation; however, there are associated physiological and ecological costs with potential fitness consequences. Previous studies have controlled for, but not quantified the impact of interindividual variation on torpor patterns and understanding this may provide insight on why certain thermoregulatory responses are employed. The objective of this study was to identify and quantitatively characterize the intrinsic variables and weather conditions that best explain variation in torpor patterns among individual female little brown bats, . We used temperature-sensitive radio-transmitters affixed to females to measure skin temperature patterns of 35 individuals roosting in bat boxes in the spring and summer. We used Bayesian multi-model inference to rank a priori-selected models and variables based on their explanatory power. Reproductive condition and interindividual effects best explained torpor duration and depth, and weather best explained torpor frequency. Of the reproductive conditions, lactating females used torpor for the shortest durations and at shallower depths (i.e., smallest drop in minimum ), while females in early spring (i.e., not-obviously-pregnant) used torpor for the longest and deepest. Among individuals, the greatest difference in effects on duration occurred between pregnant individuals, suggesting interindividual variation within reproductive condition. Increases in precipitation and wind were associated with a higher probability of torpor use. Our results provide further support that multiple variables explain torpor patterns and highlight the importance of including individual effects when studying thermoregulatory patterns in heterothermic species.
Open Research Badges: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.c04tj85.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509385 | PMC |
http://dx.doi.org/10.1002/ece3.5091 | DOI Listing |
Nat Metab
January 2025
Neuroscience Institute, College of Arts and Sciences, Georgia State University, Atlanta, GA, USA.
Interoception broadly refers to awareness of one's internal milieu. Although the importance of the body-to-brain communication that underlies interoception is implicit, the vagal afferent signalling and corresponding brain circuits that shape perception of the viscera are not entirely clear. Here, we use mice to parse neural circuits subserving interoception of the heart and gut.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
Because hummingbirds are small and have an expensive mode of locomotion, they have constrained energy budgets. Torpor is used to buffer against these energetic challenges, but its frequency and duration vary. We measured lipid content, metabolic rates and torpor use in two species of migrating hummingbirds, calliope () and rufous hummingbirds () at a stopover site.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Forest and Wildlife Ecology, US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA.
Anthropogenically driven environmental change has imposed substantial threats on biodiversity, including the emergence of infectious diseases that have resulted in declines of wildlife globally. In response to pathogen invasion, maintaining diversity within host populations across heterogenous environments is essential to facilitating species persistence. White-nose syndrome is an emerging fungal pathogen that has caused mass mortalities of hibernating bats across North America.
View Article and Find Full Text PDFJ Exp Biol
December 2024
Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany.
In a warming world, it is crucial to understand how rising temperature affects the physiology of organisms. To investigate the effect of a warming environment on the metabolism of heterothermic bats during the costly lactation period, we characterised metabolic rates in relation to roost temperature, the bats' thermoregulatory state (normothermia or torpor), time of day and age of juveniles. In a field experiment, we heated the communal roosts of a wild colony of Bechstein's bats (Myotis bechsteinii) every other day while measuring metabolic rates using flow-through respirometry.
View Article and Find Full Text PDFThe tricolored bat (), once common in the eastern United States, has experienced significant mortality due to white-nose syndrome (WNS), a fungal disease that primarily affects bats hibernating in caves and mines. In coastal regions of the southeastern United States, where caves and mines are scarce, tricolored bats often use roadway culverts as hibernacula. However, WNS infection dynamics in culverts are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!