The aerial parts of land plants are covered by a hydrophobic layer called cuticle that limits non-stomatal water loss and provides protection against external biotic and abiotic stresses. The cuticle is composed of polymer cutin and wax comprising a mixture of very-long-chain fatty acids and their derivatives, while also bioactive secondary metabolites such as triterpenoids are present. Fleshy fruits are also covered by the cuticle, which has an important protective role during the fruit development and ripening. Research related to the biosynthesis and composition of cuticles on vegetative plant parts has largely promoted the research on cuticular waxes in fruits. The chemical composition of the cuticular wax varies greatly between fruit species and is modified by developmental and environmental cues affecting the protective properties of the wax. This review focuses on the current knowledge of the cuticular wax biosynthesis during fleshy fruits development, and on the effect of environmental factors in regulation of the biosynthesis. Bioactive properties of fruit cuticular waxes are also briefly discussed, as well as the potential for recycling of industrial fruit residues as a valuable raw material for natural wax to be used in food, cosmetics and medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499192PMC
http://dx.doi.org/10.3389/fpls.2019.00431DOI Listing

Publication Analysis

Top Keywords

cuticular wax
12
fleshy fruits
12
developmental environmental
8
wax biosynthesis
8
biosynthesis fleshy
8
cuticular waxes
8
wax
6
cuticular
5
environmental regulation
4
regulation cuticular
4

Similar Publications

Insertion of the β-ketoacyl-CoA synthase MdKCS2 promoter segment causes wax biosynthesis difference in apple peel.

New Phytol

January 2025

Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.

Cuticular wax is essential for fruit to maintain moisture. Although the wax content of peel surface in apple (Malus spp.) varies, the detailed molecular mechanism remains unclear.

View Article and Find Full Text PDF

Plant cuticular waxes serve as highly responsive adaptations to variable environments. Aliphatic waxes consist of very-long-chain (VLC) compounds produced from 1-alcohol- or alkane-forming pathways. The existing variation in 1-alcohols and alkanes across Arabidopsis accessions revealed that 1-alcohol amounts are negatively correlated with aridity factors, whereas alkanes display the opposite behaviour.

View Article and Find Full Text PDF

Natural variation in an HD-ZIP factor identifies its role in controlling apple leaf cuticular wax deposition.

Dev Cell

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, China. Electronic address:

Natural variation is an invaluable genetic resource for plant trait improvement. Here, we performed a genome-wide association study (GWAS) analysis and identified MdHDG5, which controls apple leaf cuticular wax. An A-to-G single-nucleotide polymorphism (SNP) on the HDG5 promoter is associated with HDG5 expression and hexacosanol content (a component of leaf cuticular wax).

View Article and Find Full Text PDF

All terrestrial plants possess a hydrophobic cuticle in the outermost layer of their aerial organs that is composed of cutin and wax. The cuticle serves as the first barrier between the plant and the surrounding environment and plays a key role in the resistance of plants to abiotic and biotic stressors. Additionally, they are closely associated with plant growth and development.

View Article and Find Full Text PDF

The role of intraspecific mechanical and chemical signaling for mate and sexual recognition in male Tityus pusillus (Scorpiones, Buthidae).

Zoology (Jena)

December 2024

Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil; Laboratory of Sciences for the Environment, University of Corsica, UMR 6134 SPE, Ajaccio 20000, France.

Hydrophobic compounds present in the cuticular wax layer (CWL) of terrestrial arthropods protect them from dehydration and are also involved in chemical communication. However, the role of CWL compounds in the behavioral ecology of scorpions has been studied less often, with most investigations focusing on their responses to mechanical stimuli. In this study, we aimed to characterize the CWL composition of Tityus pusillus (Scorpiones, Buthidae) and examine the influence of CWL solvent extracts and movement on intraspecific mate and sexual recognition by males of this species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!