The rod-shaped Myxococcus xanthus cells move with defined front-rear polarity using polarized motility systems. A polarity module consisting of the small GTPase MglA, its cognate GTPase activating protein (GAP) MglB and RomR establishes this polarity. Agl-Glt gliding motility complexes assemble and disassemble at the leading and lagging pole, respectively. These processes are stimulated by MglA-GTP at the leading and MglB at the lagging pole. Here, we identify RomX as an integral component of the polarity module. RomX and RomR form a complex that has MglA guanine nucleotide exchange factor (GEF) activity and also binds MglA-GTP. In vivo RomR recruits RomX to the leading pole forming the RomR-RomX complex that stimulates MglA-GTP formation and binding, resulting in a high local concentration of MglA-GTP. The spatially separated and opposing activities of the RomR-RomX GEF at the leading and the MglB GAP at the lagging cell pole establish front-rear polarity by allowing the spatially separated assembly and disassembly of Agl-Glt motility complexes. Our findings uncover a regulatory system for bacterial cell polarity that incorporates a nucleotide exchange factor as well as an NTPase activating protein for regulation of a nucleotide-dependent molecular switch and demonstrate a spatial organization that is conserved in eukaryotes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41564-019-0451-4DOI Listing

Publication Analysis

Top Keywords

gtpase mgla
8
romr-romx gef
8
mglb gap
8
myxococcus xanthus
8
front-rear polarity
8
polarity module
8
activating protein
8
motility complexes
8
lagging pole
8
leading mglb
8

Similar Publications

Article Synopsis
  • Type IVa pili (T4aP) enable bacteria to move across surfaces by extending, adhering, and retracting, with their number and positioning being vital for efficient movement.
  • This research focuses on how T4aP formation is regulated in bacteria, highlighting proteins like MglA, SgmX, and the newly identified SopA, all of which play roles in localizing T4aP at the leading pole of the cells.
  • The study reveals a complex interaction network among these proteins that precisely controls T4aP levels, influencing bacterial motility and potentially impacting processes like biofilm formation and virulence.
View Article and Find Full Text PDF

Cell polarity oscillations in Myxococcus xanthus motility are driven by a prokaryotic small Ras-like GTPase, mutual gliding protein A (MglA), which switches from one cell pole to the other in response to extracellular signals. MglA dynamics is regulated by MglB, which functions both as a GTPase activating protein (GAP) and a guanine nucleotide exchange factor (GEF) for MglA. With an aim to dissect the asymmetric role of the two MglB protomers in the dual GAP and GEF activities, we generated a functional MglAB complex by coexpressing MglB with a linked construct of MglA and MglB.

View Article and Find Full Text PDF

During cell migration, front-rear polarity is spatiotemporally regulated; however, the underlying design of regulatory interactions varies. In rod-shaped Myxococcus xanthus cells, a spatial toggle switch dynamically regulates front-rear polarity. The polarity module establishes front-rear polarity by guaranteeing front pole-localization of the small GTPase MglA.

View Article and Find Full Text PDF

Unorthodox regulation of the MglA Ras-like GTPase controlling polarity in Myxococcus xanthus.

FEBS Lett

March 2023

Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille University, France.

Motile cells have developed a large array of molecular machineries to actively change their direction of movement in response to spatial cues from their environment. In this process, small GTPases act as molecular switches and work in tandem with regulators and sensors of their guanine nucleotide status (GAP, GEF, GDI and effectors) to dynamically polarize the cell and regulate its motility. In this review, we focus on Myxococcus xanthus as a model organism to elucidate the function of an atypical small Ras GTPase system in the control of directed cell motility.

View Article and Find Full Text PDF

The Ras-like GTPase MglA is a key regulator of front-rear polarity in the rod-shaped Myxococcus xanthus cells. MglA-GTP localizes to the leading cell pole and stimulates assembly of the two machineries for type IV pili-dependent motility and gliding motility. MglA-GTP localization is spatially constrained by its cognate GEF, the RomR/RomX complex, and GAP, the MglB Roadblock-domain protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!