The rod-shaped Myxococcus xanthus cells move with defined front-rear polarity using polarized motility systems. A polarity module consisting of the small GTPase MglA, its cognate GTPase activating protein (GAP) MglB and RomR establishes this polarity. Agl-Glt gliding motility complexes assemble and disassemble at the leading and lagging pole, respectively. These processes are stimulated by MglA-GTP at the leading and MglB at the lagging pole. Here, we identify RomX as an integral component of the polarity module. RomX and RomR form a complex that has MglA guanine nucleotide exchange factor (GEF) activity and also binds MglA-GTP. In vivo RomR recruits RomX to the leading pole forming the RomR-RomX complex that stimulates MglA-GTP formation and binding, resulting in a high local concentration of MglA-GTP. The spatially separated and opposing activities of the RomR-RomX GEF at the leading and the MglB GAP at the lagging cell pole establish front-rear polarity by allowing the spatially separated assembly and disassembly of Agl-Glt motility complexes. Our findings uncover a regulatory system for bacterial cell polarity that incorporates a nucleotide exchange factor as well as an NTPase activating protein for regulation of a nucleotide-dependent molecular switch and demonstrate a spatial organization that is conserved in eukaryotes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41564-019-0451-4 | DOI Listing |
J Bacteriol
November 2024
Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
J Biol Chem
April 2024
Department of Biology, Indian Institute of Science Education and Research Pune, Pune, India. Electronic address:
Cell polarity oscillations in Myxococcus xanthus motility are driven by a prokaryotic small Ras-like GTPase, mutual gliding protein A (MglA), which switches from one cell pole to the other in response to extracellular signals. MglA dynamics is regulated by MglB, which functions both as a GTPase activating protein (GAP) and a guanine nucleotide exchange factor (GEF) for MglA. With an aim to dissect the asymmetric role of the two MglB protomers in the dual GAP and GEF activities, we generated a functional MglAB complex by coexpressing MglB with a linked construct of MglA and MglB.
View Article and Find Full Text PDFNat Commun
July 2023
Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
During cell migration, front-rear polarity is spatiotemporally regulated; however, the underlying design of regulatory interactions varies. In rod-shaped Myxococcus xanthus cells, a spatial toggle switch dynamically regulates front-rear polarity. The polarity module establishes front-rear polarity by guaranteeing front pole-localization of the small GTPase MglA.
View Article and Find Full Text PDFFEBS Lett
March 2023
Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille University, France.
Motile cells have developed a large array of molecular machineries to actively change their direction of movement in response to spatial cues from their environment. In this process, small GTPases act as molecular switches and work in tandem with regulators and sensors of their guanine nucleotide status (GAP, GEF, GDI and effectors) to dynamically polarize the cell and regulate its motility. In this review, we focus on Myxococcus xanthus as a model organism to elucidate the function of an atypical small Ras GTPase system in the control of directed cell motility.
View Article and Find Full Text PDFPLoS Genet
September 2022
Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
The Ras-like GTPase MglA is a key regulator of front-rear polarity in the rod-shaped Myxococcus xanthus cells. MglA-GTP localizes to the leading cell pole and stimulates assembly of the two machineries for type IV pili-dependent motility and gliding motility. MglA-GTP localization is spatially constrained by its cognate GEF, the RomR/RomX complex, and GAP, the MglB Roadblock-domain protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!