Bat adeno-associated viruses as gene therapy vectors with the potential to evade human neutralizing antibodies.

Gene Ther

Department of Cardiology and Laboratory of Gene Therapy for Heart Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China.

Published: June 2019

The prevalence of adeno-associated virus (AAV) has been investigated in bat populations, but little is known about the biological properties of this virus. In this study, four full-length bat AAV capsid genes were isolated in China, with their amino acid sequences sharing 61% identity with those of AAV2 on average. These capsid genes could package AAV particles in combination with AAV2 rep and ITRs, albeit at a lower efficiency. Bat AAVs could only slightly infect mouse liver but could transduce mouse muscle to some extent after systemic administration with a higher muscle/liver ratio than that of primate AAVs. Bat AAV 10HB showed moderate muscle transduction, similar to that of AAV2, during direct intramuscular injection and, compared with other AAV serotypes, was also relatively efficient in resisting human antibody neutralization after intramuscular injection. Evolutionary analysis revealed a number of codons in bat AAV capsid genes subject to positive selection, with sites corresponding to V259 and N691 in 10HB capsids being localized on the surface of the AAV2 capsid. Mutagenesis studies indicated that the positive selection in bat AAV capsids is driven by their tropism evolution in host species. Taken together, the results of this study indicate that bat AAV 10HB vector has the possible applications for muscular gene therapy, especially in the presence of human AAV neutralizing antibodies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7091930PMC
http://dx.doi.org/10.1038/s41434-019-0081-8DOI Listing

Publication Analysis

Top Keywords

bat aav
20
capsid genes
12
aav
9
bat
8
gene therapy
8
neutralizing antibodies
8
aav capsid
8
aav 10hb
8
intramuscular injection
8
positive selection
8

Similar Publications

Background: The activation of brown adipose tissue (BAT) is associated with improved metabolic health in humans. We previously identified the mitochondrial protein 4-Nitrophenylphosphatase Domain and Non-Neuronal SNAP25-Like 1 (Nipsnap1) as a novel regulatory factor that integrates with lipid metabolism and is critical to sustain the long-term activation of BAT, but the precise mechanism and function of Nipsnap1 is unknown.

Objectives: Define how the regulatory factor Nipsnap1 integrates with lipid metabolism.

View Article and Find Full Text PDF

RNA-binding protein YBX3 promotes PPARγ-SLC3A2 mediated BCAA metabolism fueling brown adipogenesis and thermogenesis.

Mol Metab

December 2024

Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China. Electronic address:

Article Synopsis
  • The study investigates the role of RNA-binding protein YBX3 in brown adipose tissue (BAT) differentiation and thermogenesis, key processes in combatting obesity and metabolic disorders.
  • YBX3 is shown to be essential for BAT function, with its loss leading to reduced thermogenesis and increased obesity, while its overexpression enhances energy expenditure.
  • The findings suggest that YBX3 stabilizes important mRNAs for amino acid metabolism, indicating its potential as a therapeutic target for obesity treatment.
View Article and Find Full Text PDF

Objective: Brown adipose tissue (BAT) plays an important role in mammalian thermogenesis through the expression of uncoupling protein 1 (UCP1). Our previous study identified cytoplasmic polyadenylation element binding protein 2 (CPEB2) as a key regulator that activates the translation of Ucp1 with a long 3'-untranslated region (Ucp1L) in response to adrenergic signaling. Mice lacking CPEB2 or Ucp1L exhibited reduced UCP1 expression and impaired thermogenesis; however, only CPEB2-null mice displayed obesogenic phenotypes.

View Article and Find Full Text PDF

Objective: Recombinant adeno-associated virus (rAAV) vectors are powerful tools for the sustained expression of proteins in vivo and have been successfully used for mechanistic studies in mice. A major challenge associated with this method is to obtain tissue specificity and high expression levels without need of local virus administration.

Methods: To achieve this goal for brown adipose tissue (BAT), we developed a rAAV vector for intravenous bolus injection, which includes an expression cassette comprising an uncoupling protein-1 enhancer-promoter for transcription in brown adipocytes and miR122 target sequences for suppression of expression in the liver, combined with packaging in serotype Rec2 capsid protein.

View Article and Find Full Text PDF

Vestigial like 4 regulates the adipogenesis of classical brown adipose tissue.

bioRxiv

July 2024

Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501.

Brown adipose tissue (BAT) is mammals' primary non-shivering thermogenesis organ, and the molecular mechanisms regulating BAT growth and adipogenesis are largely unknown. The Hippo-YAP pathway has been well-known for controlling organ size, and Vestigial like 4 (VGLL4) is a transcriptional regulator that modulates the Hippo-YAP pathway by competing against YAP for binding to TEAD proteins. In this study, we dissected the function of VGLL4 in regulating BAT development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!