We have previously identified a novel Aurora-A-mediated Serine 379 (S379) phosphorylation of a poly(C)-binding protein, hnRNPK, the overexpression of which is frequently observed in various cancers. It is known that the oncogenic Aurora-A kinase promotes the malignancy of cancer cells. This study aims to investigate the unexplored functions of hnRNPK S379 phosphorylation using MDA-MB-231 cells, a triple negative breast cancer cell that has amplification of the Aurora-A kinase gene. Accordingly, we established two cell lines in which the endogenous hnRNPK was replaced with either S379D or S379A hnRNPK respectively. Notably, we found that a phosphorylation-mimic S379D mutant of hnRNPK suppressed cell migration and, conversely, a phosphorylation-defective S379A mutant promoted migration. Moreover, Twist was downregulated upon hnRNPK S379 phosphorylation, whereas β-catenin and MMP12 were increased when there was loss of hnRNPK S379 phosphorylation in MDA-MB-231 cells. Furthermore, S379A hnRNPK increases stability of β-catenin in MDA-MB-231 cells. In conclusion, our results suggest that hnRNPK S379 phosphorylation regulates migration via the EMT signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527834PMC
http://dx.doi.org/10.1038/s41598-019-44063-zDOI Listing

Publication Analysis

Top Keywords

s379 phosphorylation
24
hnrnpk s379
20
mda-mb-231 cells
16
hnrnpk
10
triple negative
8
aurora-a kinase
8
phosphorylation mda-mb-231
8
s379a hnrnpk
8
phosphorylation
6
cells
5

Similar Publications

We previously identified the AKT-phosphorylation sites in nuclear receptors and showed that phosphorylation of S379 in mouse retinoic acid γ and S518 in human estrogen receptor α regulate their activity independently of the ligands. Since this site is conserved at S510 in human liver receptor homolog 1 (hLRH1), we developed a monoclonal antibody (mAb) that recognized the phosphorylation form of hLRH1S510 (hLRH1) and verified its clinicopathological significance in hepatocellular carcinoma (HCC). We generated the anti-hLRH1 mAb and assessed its selectivity.

View Article and Find Full Text PDF

Integrated metabolomics and phosphoproteomics reveal the protective role of exosomes from human umbilical cord mesenchymal stem cells in naturally aging mouse livers.

Exp Cell Res

June 2023

Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China. Electronic address:

Background: Aging is characterized by a general decline in cellular function, which ultimately affects whole body homeostasis. This study aimed to investigate the effects and underlying mechanisms of exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSC-exos) on the livers of naturally aging mice.

Method: Twenty-two-month-old C57BL6 mice were used as a natural aging animal model, divided into a saline-treated wild-type aged control group (WT-AC) and a hUCMSC-exo-treated group (WT-AEX), and then detected by morphology, metabolomics and phosphoproteomics.

View Article and Find Full Text PDF

ARHGAP25, a RAC-specific GTPase activating protein (GAP), is an essential regulator of phagocyte effector functions such as phagocytosis, superoxide production, and transendothelial migration. Furthermore, its complex role in tumor behavior has recently been recognized. We previously demonstrated that phosphorylation of serine 363 in ARHGAP25 regulates hematopoietic stem cells and progenitor cells in mouse bone marrow.

View Article and Find Full Text PDF

We have previously identified a novel Aurora-A-mediated Serine 379 (S379) phosphorylation of a poly(C)-binding protein, hnRNPK, the overexpression of which is frequently observed in various cancers. It is known that the oncogenic Aurora-A kinase promotes the malignancy of cancer cells. This study aims to investigate the unexplored functions of hnRNPK S379 phosphorylation using MDA-MB-231 cells, a triple negative breast cancer cell that has amplification of the Aurora-A kinase gene.

View Article and Find Full Text PDF

Antiviral role of grouper STING against iridovirus infection.

Fish Shellfish Immunol

November 2015

Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China. Electronic address:

Stimulator of interferon genes (STING, also known as MITA, ERIS, MPYS or TMEM173) has been identified as a central component in the innate immune response to cytosolic DNA and RNA derived from different pathogens. However, the detailed role of STING during fish iridovirus infection still remained largely unknown. Here, the STING homolog from grouper Epinephelus coioides (EcSTING) was cloned and its effects on IFN response and antiviral activity were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!