Sparse populations of neurons in the dentate gyrus (DG) of the hippocampus are causally implicated in the encoding of contextual fear memories. However, engram-specific molecular mechanisms underlying memory consolidation remain largely unknown. Here we perform unbiased RNA sequencing of DG engram neurons 24 h after contextual fear conditioning to identify transcriptome changes specific to memory consolidation. DG engram neurons exhibit a highly distinct pattern of gene expression, in which CREB-dependent transcription features prominently (P = 6.2 × 10), including Atf3 (P = 2.4 × 10), Penk (P = 1.3 × 10), and Kcnq3 (P = 3.1 × 10). Moreover, we validate the functional relevance of the RNAseq findings by establishing the causal requirement of intact CREB function specifically within the DG engram during memory consolidation, and identify a novel group of CREB target genes involved in the encoding of long-term memory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527697 | PMC |
http://dx.doi.org/10.1038/s41467-019-09960-x | DOI Listing |
Front Comput Neurosci
January 2025
Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea.
Memory consolidation refers to the process of converting temporary memories into long-lasting ones. It is widely accepted that new experiences are initially stored in the hippocampus as rapid associative memories, which then undergo a consolidation process to establish more permanent traces in other regions of the brain. Over the past two decades, studies in humans and animals have demonstrated that the hippocampus is crucial not only for memory but also for imagination and future planning, with the CA3 region playing a pivotal role in generating novel activity patterns.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain.
Tetrameric AMPA-type ionotropic glutamate receptors are primary transducers of fast excitatory synaptic transmission in the central nervous system, and their properties and abundance at the synaptic surface are crucial determinants of synaptic efficacy in neuronal communication across the brain. The induction of long-term potentiation (LTP) leads to the insertion of GluA1-containing AMPA receptors at the synaptic surface, whereas during long-term depression (LTD), these receptors are internalized into the cytoplasm of the spine. Disruptions in the trafficking of AMPA receptors to and from the synaptic surface attenuate both forms of synaptic plasticity.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
The anterior cingulate cortex is responsible for multiple cognitive functions like fear, pain management, decision-making, risk and reward assessment, and memory consolidation. However, its cell-type-specific functions are not clearly understood. To reveal the selective functional role of Parvalbumin-expressing GABAergic interneurons in the ACC, we knocked down (KD) the PV gene in-vivo in rats.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Forensic Medicine, Key Laboratory of National Health Commission for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
Lysine demethylase 7A (KDM7A) catalyzes the removal of dimethylation from histone H3 lysine 9 and lysine 27, both of which are associated with transcription repression. Previous study indicates that Kdm7a mRNA in the medial prefrontal cortex (mPFC) increases after drug exposure, yet its role in drug-related behaviors is largely unknown. In a morphine-conditioned place preference (CPP) paradigm, these findings reveal a specific increase of Kdm7a expression in the mPFC 7 days after drug withdrawal.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Neuroscience and Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
Implicit motor learning involves the acquisition and consolidation of motor skills without conscious awareness, influenced by various factors. Punishment and reward have been identified as significant modulators during training, impacting skill acquisition differently. Additionally, the role of a second declarative task in offline consolidation has been explored, affecting both stabilization and enhancement processes during wake and sleep periods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!