Characterization of a novel salt-, xylose- and alkali-tolerant GH43 bifunctional β-xylosidase/α-l-arabinofuranosidase from the gut bacterial genome.

J Biosci Bioeng

Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, People's Republic of China; Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China; School of Life Science, Yunnan Normal University, Kunming 650500, People's Republic of China. Electronic address:

Published: October 2019

A GH43 bifunctional β-xylosidase encoding gene (XylRBM26) was cloned from Massilia sp. RBM26 and successfully expressed in Escherichia coli. Recombinant XylRBM26 exhibited β-xylosidase and α-l-arabinofuranosidase activities. When 4-nitrophenyl-β-d-xylopyranoside was used as a substrate, the enzyme reached optimal activity at pH 6.5 and 50°C and remained stable at pH 5.0-10.0. Purified XylRBM26 presented good salt tolerance and retained 96.6% activity in 3.5 M NaCl and 77.9% initial activity even in 4.0 M NaCl. In addition, it exhibited high tolerance to xylose with Ki value of 500 mM. This study was the first to identify and characterize NaCl-tolerant β-xylosidase/α-l-arabinofuranosidase from the gut microbiota. The enzyme's salt, xylose, and alkali stability and resistance to various chemicals make it a potential biocatalyst for the saccharification of lignocellulose, the food industry, and industrial processes conducted in sea water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2019.03.018DOI Listing

Publication Analysis

Top Keywords

gh43 bifunctional
8
β-xylosidase/α-l-arabinofuranosidase gut
8
characterization novel
4
novel salt-
4
salt- xylose-
4
xylose- alkali-tolerant
4
alkali-tolerant gh43
4
bifunctional β-xylosidase/α-l-arabinofuranosidase
4
gut bacterial
4
bacterial genome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!