Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO.

Waste Manag

College of Sciences, Shanghai University, No. 99 Shangda Rd., Shanghai 200444, China. Electronic address:

Published: March 2019

In this study, biochar samples were prepared from the co-pyrolysis of sewage sludge (SS) and CaO to explore the transformation of P speciation in sample. The potential of these biochar as a fertilizer to promote the growth of the plant was also evaluated. The result indicated that CaO addition can greatly facilitate the conversion of non-apatite inorganic phosphorus (NAIP) to apatite inorganic phosphorus (AP, mainly Ca(PO) and CaMg(PO)). The addition of 10% CaO in feedstock is sufficient to convert SS inherent P into more bioavailable AP. Under such a dosage, AP content in biochar increased by 21.2-33.6% in contrast to CaO free sample at pyrolysis temperature of 500-800 °C, and water-soluble phosphorus (WSP) content decreased to less than 1% of TP. The addition of CaO can also apparently reduce Zn, Mn leaching from biochar. Additionally, hydroponics assay showed that CaO amended SS biochar can promote the growth of rice seedling. The results of this study indicate that preparing CaO amended SS biochar is a technically feasible strategy to utilize P resource in SS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2019.01.045DOI Listing

Publication Analysis

Top Keywords

sewage sludge
8
cao
8
promote growth
8
inorganic phosphorus
8
cao amended
8
amended biochar
8
biochar
7
phosphorus
4
phosphorus speciation
4
speciation bioavailability
4

Similar Publications

Nitrate (NO) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO concentration ranged from 0.

View Article and Find Full Text PDF

Design of S-Scheme CuInS/CeO Heterojunction for Enhanced Photocatalytic Degradation of Pharmaceuticals in Wastewater.

Langmuir

January 2025

Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.

The release of common medications and illegal drugs into the environment could be potentially harmful to the ecosystem and hamper the behavior and growth of plants and animals. These pollutants gain access to water through sewage and factory discharges and have been found to exceed safety limits in water bodies. Therefore, there is an urgent need for improved wastewater purification systems.

View Article and Find Full Text PDF

Effect of sludge-based biochar on the stabilization of Cd in soil: experimental and theoretical studies.

Int J Phytoremediation

January 2025

Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China.

Soil heavy metal contamination and sludge disposal have become globally environmental issues problems of great concern. Utilizing sludge pyrolysis to produce biochar for remediating heavy metal-contaminated soil is an effective strategy to solve these two environmental problems. In this study, municipal sewage sludge and papermaking sludge were used as feedstock to prepare co-pyrolyzed biochar, which was then applied to reduce the toxicity of Cd in soil.

View Article and Find Full Text PDF

Background: Wastewater systems are usually considered antibiotic resistance hubs connecting human society and the natural environment. Antibiotic usage can increase the abundance of both ARGs (antibiotic resistance genes) and MGEs (mobile gene elements). Understanding the transcriptomic profiles of ARGs and MGEs remains a major research goal.

View Article and Find Full Text PDF

Polylactic acid microplastics before and after aging induced neurotoxicity in zebrafish by disrupting the microbiota-gut-brain axis.

J Hazard Mater

January 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:

Polylactic acid (PLA) is a biodegradable alternative to traditional plastics due to its excellent biocompatibility. However, PLA is challenging to fully degrade and can easily become microplastics (MPs) in surface water, a process accompanied by aging. This study found that aged PLA (APLA) MPs exhibited increased surface roughness, decreased surface potential, and more oxygen-containing functional groups compared to PLA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!