Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mixing is an important operation in solid-state anaerobic digestion (SS-AD) to improve the mass transfer of the solid phase. This study proposed simple turning by loader in common garage-type digester without commonly used mixer or percolation system (simplified SS-AD). In simplified-SS-AD, turning is conducted in open condition. Thus, oxidation of anaerobic sludge during turning would influence digestion performance. Therefore, in this study, the effect of turning wastes by mixing during digestion on a simplified SS-AD fed with rice straw and pig urine was investigated. Four different mixing frequency levels-no mixing (M0) and mixing once a day (M-1/1), once every 3 days (M-1/3) and once a week (M-1/7)-were conducted. Methane yields of M0, M-1/3 and M-1/7 were comparable with each other. Methane yield and lag period of M-1/1 were approximately 61% and 155% of M0 (351.2 mL/g VS and 4.7 days), respectively. Furthermore, the chemical oxygen demand (COD) of acetate accumulated in the digestate of M-1/1 was comparable to the difference in the COD of methane production between M-1/1 and the other treatments. Mixing every day also resulted in a higher oxidation-reduction potential and carbon dioxide content. These findings suggest that methanogenesis was inhibited in M-1/1 by frequent mixing in the atmosphere. Net energy analysis of SS-AD plant operation showed that M0 can obtain the highest net energy gain, whereas net energy production of M-1/7 was reduced by rewarming after mixing. Therefore, no mixing is the most effective approach for the proposed simplified process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2019.02.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!