The development of reliable, affordable and efficient sensors is a key step in providing tools for efficient monitoring of critical environmental parameters. This review focuses on the use of tapered optical fibres as an environmental sensing platform. Tapered fibres allow access to the evanescent wave of the propagating mode, which can be exploited to facilitate chemical sensing by spectroscopic evaluation of the medium surrounding the optical fibre, by measurement of the refractive index of the medium, or by coupling to other waveguides formed of chemically sensitive materials. In addition, the reduced diameter of the tapered section of the optical fibre can offer benefits when measuring physical parameters such as strain and temperature. A review of the basic sensing platforms implemented using tapered optical fibres and their application for development of fibre-optic physical, chemical and bio-sensors is presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567250 | PMC |
http://dx.doi.org/10.3390/s19102294 | DOI Listing |
Ocul Immunol Inflamm
January 2025
Ophthalmology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
Purpose: To describe a case series of presumed Sympathetic Ophthalmia (SO) triggered by diode laser cyclophotocoagulation (CPC) for the treatment of neovascular glaucoma.
Methods: Patients developing bilateral granulomatous uveitis after CPC between 2014 and 2024. Cases with prior ocular trauma or penetrating ocular surgery were excluded.
Am J Ophthalmol
January 2025
Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland; Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan Poland. Electronic address:
Purpose: Treatment of myopia has been informed by more than 3 decades of clinical trials and other observations. However, controversies regarding myopia control remain, such as when to stop treatment and what is the long-term efficacy of treatment. This perspective aims to describe clinically relevant and current controversies regarding myopia treatment.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.
This paper investigates the thermal effects in fused-tapered passive optical fibers under near-infrared absorption. The thermal effect is primarily caused by impurities, such as OH-, which absorb incident light and generate heat. Using the finite element method, the volume changes during fiber tapering were simulated, influencing power density and thermal distribution.
View Article and Find Full Text PDFNat Protoc
January 2025
Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, USA.
Sensitive, rapid and label-free biochemical sensors are needed for many applications. In this protocol, we describe biochemical detection using FLOWER (frequency locked optical whispering evanescent resonator)-a technique that we have used to detect single protein molecules in aqueous solution as well as exosomes, ribosomes and low part-per-trillion concentrations of volatile organic compounds. Whispering gallery mode microtoroid resonators confine light for extended time periods (hundreds of nanoseconds).
View Article and Find Full Text PDFSci Rep
January 2025
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.
A localized surface plasmon resonance (LSPR) sensor based on tapered optical fiber (TOF) using hollow gold nanoparticles (HAuNPs) for measuring the refractive index (RI) is presented. This optical fiber sensor is a good candidate for a label-free RI biosensor. In practical biosensors, bioreceptors are immobilized on nanoparticles (NPs) that only absorb specific biomolecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!