A marine red alga, (Harvey) Yamada (Rhodomelaceae), is a rich source of bromophenols with a wide array of biological activities. This study investigates the anti-tyrosinase activity of the alga. Moderate activity was demonstrated by the methanol extract of , and subsequent column chromatography identified three bromophenols: 2,3,6-tribromo-4,5-dihydroxybenzyl methyl alcohol (), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (), and bis-(2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether) (). Bromophenols and exhibited potent competitive tyrosinase inhibitory activity against l-tyrosine substrates, with IC values of 10.78 ± 0.19 and 2.92 ± 0.04 μM, respectively. Against substrate l-3,4-dihydroxyphenylalanine (l-DOPA), compounds and demonstrated moderate activity, while showed no observable effect. The experimental data were verified by a molecular docking study that found catalytic hydrogen and halogen interactions were responsible for the activity. In addition, compounds and exhibited dose-dependent inhibitory effects in melanin and intracellular tyrosinase levels in α-melanocyte-stimulating hormone (α-MSH)-induced B16F10 melanoma cells. Compounds and were the most effective tyrosinase inhibitors. In addition, increasing the bromine group number increased the mushroom tyrosinase inhibitory activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562427 | PMC |
http://dx.doi.org/10.3390/md17050295 | DOI Listing |
Chem Biodivers
January 2025
Fukuyama University: Fukuyama Daigaku, Faculty of Life Science and Biotechnology, 1 Gakuen-cho, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292, Fukuyama, JAPAN.
Marine red alga Laurencia composita was collected from seven sampling locations in Japan, and all samples were identified based on morphological studies as well as rbcL sequencing analysis. This is the first report of the isolation of (-)-8-bromo-9-hydroxy-(E)-γ-bisabolene (1) as a natural product, and bisabolene-type and β-chamigrene-type sesquiterpenes found in L. composita collected in Japan.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Institute of Science Tokyo, Yokohama, Japan.
The unicellular red alga Cyanidioschyzon merolae is a eukaryotic photosynthetic model organism used for basic and applied cell biology studies. Its nuclear genome can be modified by homologous recombination with exogenously introduced DNA. The comparison of mutants with isogenic strains is critical for reliable genetic analyses; however, this has been impossible thus far.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Life Sciences, Yantai University, Shandong 264005, PR China.
Pure phycocyanin (PC) hexamers from red algae were first prepared in this research. PC hexamers are helpful for studying the role and mechanism of PCs in energy transfer within phycobilisomes from red algae. The PC hexamers from Polysiphonia urceolata are stable at lower pH (pH 5.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
Anthropogenic pressures affect large stretches of Mediterranean coastal environments, determining alterations, including chemical pollution, able to impair ecosystem functioning and services. Among the pollutants of major concern for their toxicity and persistence, there are polycyclic aromatic hydrocarbons (PAHs), which can be effectively monitored through bioaccumulation approaches. However, the main biomonitor of PAHs in the Mediterranean Sea, Posidonia oceanica, is currently undergoing extensive regressions due to anthropogenic pressures, forcing the search for alternative biomonitors.
View Article and Find Full Text PDFISME Commun
January 2024
Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States.
Alga-dominated geothermal spring communities in Yellowstone National Park (YNP), USA, have been the focus of many studies, however, relatively little is known about the composition and community interactions which underpin these ecosystems. Our goal was to determine, in three neighboring yet distinct environments in Lemonade Creek, YNP, how cells cope with abiotic stressors over the diurnal cycle. All three environments are colonized by two photosynthetic lineages, and , both of which are extremophilic Cyanidiophyceae red algae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!