Phenolic compounds of Aspalathus linearis (rooibos) are susceptible to oxidation during "fermentation", a process characterized by the formation of a red-brown leaf color. The role of enzymes in this process is not yet understood. An experiment with dried green rooibos plant material pre-treated at 170 °C for 30 min to denature and "inactivate" endogenous enzymes was conducted to confirm the role of oxidative enzymes. The phenolic composition of "enzyme inactivated" plant material was not significantly (p ≥ .05) affected by simulated fermentation, compared to control samples, as determined using piece-wise multivariate analysis of variance for successive time intervals. This proves that rooibos enzymes participate in the oxidation of phenolic compounds during fermentation of the plant material. A kinetic modeling approach was subsequently used to establish reaction kinetic parameters for selected rooibos phenolic compounds. The degradation of aspalathin and nothofagin and formation of eriodictyol glucosides during simulated fermentation at four temperatures from 37 to 50 °C were best described by the fractional conversion model based on first-order kinetics (r > 0.98), which allows for non-zero equilibrium concentrations. The extent of degradation for other compounds was too low to enable kinetic modeling. Reaction rates for the degradation/formation of phenolic compounds during fermentation followed the Arrhenius law. Less phenolic degradation (higher equilibrium concentration), but a higher reaction rate constant, was observed at higher temperatures, which could possibly be attributed to inactivation of enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2019.03.041 | DOI Listing |
Tissue Cell
January 2025
Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China. Electronic address:
Objective: Patients with osteosarcoma (OS) exhibit metastasis upon diagnosis, and the condition frequently acquires resistance to traditional chemotherapy treatments, failing the therapy. The objective of this research was to examine the impact of curculigoside (Cur), a key phenolic compound discovered in the rhizome of C. orchioides Gaertn, on OS cells and the surrounding tumor environment.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
Identifying the optimal cultivation regions and evaluating the impact of environmental factors are crucial for selecting the best conditions for the commercial production of important medicinal and industrial plants. This study examined the effects of different cultivation areas-Rayen, Eghlid, Kalat, and Zanjan-on the agro-morphological and phytochemical traits of Glycyrrhiza glabra. The findings revealed that the location where the plants were grown significantly influenced their physical and chemical characteristics.
View Article and Find Full Text PDFBr J Nutr
January 2025
EPIUnit - Unidade de Investigação Epidemiológica, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.
Flavonoids are a key class of polyphenols, i.e., phytochemical compounds present in foods and beverages, which have been described as having health benefits in preventing several chronic diseases.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; University of Naples Federico II, Department of Biology, Naples, Italy. Electronic address:
Bio-valorization of agri-food wastes lies in their possible conversion into fermented foodstuffs/beverages and/or biodegradable polymers such as bacterial cellulose. In this study, three different kombucha cultures were formulated using agri-food waste materials, citrus fruit residues and used coffee grounds, as alternative carbon and nitrogen sources, respectively. Over 21 days of fermentation, the kinetic profile was followed by monitoring cell number, pH variation, minerals, trace elements and production of bacterial cellulose.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye. Electronic address:
Liposomes are gaining interest in food and pharmaceutical applications due to their biocompatibility and non-toxicity. However, they suffer from low colloidal stability, leakage of encapsulated substances, and poor resistance to intestinal digestive conditions. To address these issues, propolis extract (PE) was encapsulated within a hybrid system combining liposomes and hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!