A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bridging of liquid drops at chemically structured walls. | LitMetric

Bridging of liquid drops at chemically structured walls.

Phys Rev E

Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic and Department of Molecular and Mesoscopic Modelling, ICPF of the Czech Academy Sciences, Prague 165 02, Czech Republic.

Published: April 2019

Using mesoscopic interfacial models and microscopic density functional theory we study fluid adsorption at a dry wall decorated with three completely wet stripes of width L separated by distances D_{1} and D_{2}. The stripes interact with the fluid with long-range forces inducing a large finite-size contribution to the surface free energy. We show that this nonextensive free-energy contribution scales with lnL and drives different types of bridging transition corresponding to the merging of liquid drops adsorbed at neighboring wetting stripes when the separation between them is molecularly small. We determine the surface phase diagram and show that this exhibits two triple points, where isolated drops, double drops, and triple drops coexist. For the symmetric case, D_{1}=D_{2}≡D, our results also confirm that the equilibrium droplet configuration always has the symmetry of the substrate corresponding to either three isolated drops when D is large or a single triple drop when D is small; however, symmetry-broken configurations do occur in a metastable part of the phase diagram which lies very close to the equilibrium-bridging phase boundary. Implications for phase transitions on other types of patterned surface are considered.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.042804DOI Listing

Publication Analysis

Top Keywords

liquid drops
8
phase diagram
8
isolated drops
8
drops
6
bridging liquid
4
drops chemically
4
chemically structured
4
structured walls
4
walls mesoscopic
4
mesoscopic interfacial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!