Feeding the multitude: A polynomial-time algorithm to improve sampling.

Phys Rev E

Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242, USA.

Published: April 2019

A wide variety of optimization techniques, both exact and heuristic, tend to be biased samplers. This means that when attempting to find multiple uncorrelated solutions of a degenerate Boolean optimization problem a subset of the solution space tends to be favored while, in the worst case, some solutions can never be accessed by the algorithm used. Here we present a simple postprocessing technique that improves sampling for any optimization approach, either quantum or classical. More precisely, starting from a pool of a few optimal configurations, the algorithm generates potentially new solutions via rejection-free cluster updates at zero temperature. Although the method is not ergodic and there is no guarantee that all the solutions can be found, fair sampling is typically improved. We illustrate the effectiveness of our method by improving the exponentially biased data produced by the D-Wave 2X quantum annealer [S. Mandrà et al., Phys. Rev. Lett. 118, 070502 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.070502], as well as data from three-dimensional Ising spin glasses. As part of the study, we also show that sampling is improved when suboptimal states are included and discuss sampling at a finite fixed temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.043306DOI Listing

Publication Analysis

Top Keywords

sampling
5
feeding multitude
4
multitude polynomial-time
4
polynomial-time algorithm
4
algorithm improve
4
improve sampling
4
sampling wide
4
wide variety
4
variety optimization
4
optimization techniques
4

Similar Publications

Prospective validation study of a combined urine and plasma test for predicting high-grade prostate cancer in biopsy naïve men.

Scand J Urol

January 2025

Department of Urology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

Objective: Early and accurate diagnosis of prostate cancer (PC) is crucial for effective treatment. Diagnosing  clinically insignificant cancers can lead to overdiagnosis and overtreatment, highlighting the importance of accurately selecting patients for further evaluation based on improved risk prediction tools. Novel biomarkers offer promise for enhancing this diagnostic process.

View Article and Find Full Text PDF

Introduction: Many patients acutely self-poisoned with organophosphorus insecticides have co-ingested ethanol. Currently, profenofos 50% emulsifiable concentrate (EC50) is commonly ingested for self-harm in Sri Lanka. Clinical experience suggests that ethanol co-ingestion makes management more difficult.

View Article and Find Full Text PDF

Background: The search for early and minimally invasive diagnostic approaches to pancreatic cancer (PC) remains an important issue. One of the most promising directions is to find a sensitive key in the metabolic changes during widespread causes of PC, i.e.

View Article and Find Full Text PDF

Study Design: Meta-Analysis.

Objective: The purpose of this systematic review and meta-analysis was to pool the available data comparing MIS to open surgery for thoracolumbar fractures and provide a more comprehensive assessment on this topic.

Background: There remains a debate over whether minimally invasive surgery (MIS) or open fixation provides superior outcomes for patients with thoracolumbar fractures.

View Article and Find Full Text PDF

Identification of Novel Iodinated Polyfluoroalkyl Ether Acids and Other Emerging PFAS in Soils Using a Nontargeted Molecular Network Approach.

Environ Sci Technol

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Despite advancements in high-resolution screening techniques, the identification of novel perfluoroalkyl and polyfluoroalkyl substances (PFAS) remains challenging without prior structural information. In view of this, we proposed and implemented a new data-driven algorithm to calculate spectral similarity among PFAS, facilitating the generation of molecular networks to screen for unknown compounds. Using this approach, 81 PFAS across 12 distinct classes were identified in soil samples collected near an industrial park in Shandong Province, China, including the first reported occurrence of 12 iodine-substituted PFAS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!