Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigate the directed momentum current in the quantum kicked rotor model with PT-symmetric deriving potential. For the quantum nonresonance case, the values of quasienergy become complex when the strength of the imaginary part of the kicking potential exceeds a threshold value, which demonstrates the appearance of the spontaneous PT symmetry breaking. In the vicinity of the transition point, the momentum current exhibits a staircase growth with time. Each platform of the momentum current corresponds to the mean momentum of some eigenstates of the Floquet operator whose imaginary parts of the quasienergy are significantly large. Above the transition point, the momentum current increases linearly with time. Interestingly, its acceleration rate exhibits a kind of "quantized" increment with the kicking strength. We propose a modified classical acceleration mode of the kicked rotor model to explain such an intriguing phenomenon. Our theoretical prediction is in good agreement with numerical results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.99.042201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!