Uplift of an elastic membrane by a viscous flow.

Phys Rev E

Institut de Physique du Globe de Paris, Université Paris Diderot, 75013 Paris, France and LGTPE, Ens Lyon, CNRS (UMR 5276), 69007 Lyon, France.

Published: April 2019

The uplift of an initially flat elastic membrane by an upward viscous flow is investigated experimentally. The deformed shape of the membrane results from a balance between the flow pressure, the elastic response of the membrane, and the fluid weight. This last effect becomes non-negligible for a large enough deformed area. The usual theoretical approach supposes the presence of a prewetting film regularizing the viscous stresses according to Lister et al. [Phys. Rev. Lett. 111, 154501 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.154501]. Nevertheless, in our experiments without prewetting films, the measurements are correctly described with this theory in the elastic regime. Microscale roughness of membranes could introduce an equivalent characteristic scale in the problem. An alternative explanation could be provided by the appearance of a fluid lag filled with gas, for which a new theoretical framework has been recently proposed by Ball and Neufeld [Phys. Rev. Fluids 3, 074101 (2018)2469-990X10.1103/PhysRevFluids.3.074101]. We compare the two approaches and find that both describe reasonably our experiments. However, consistency tests of both models show that the prewetting film model is more appropriate to describe our experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.043102DOI Listing

Publication Analysis

Top Keywords

elastic membrane
8
viscous flow
8
prewetting film
8
[phys rev
8
uplift elastic
4
membrane
4
membrane viscous
4
flow uplift
4
uplift initially
4
initially flat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!