Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previous lesion studies suggest that semantic and phonological fluency are differentially subserved by distinct brain regions in the left temporal and the left frontal cortex, respectively. However, as of yet, this often implied double dissociation has not been explicitly investigated due to mainly two reasons: (i) the lack of sufficiently large samples of brain-lesioned patients that underwent assessment of the two fluency variants and (ii) the lack of tools to assess interactions in factorial analyses of non-normally distributed behavioral data. In addition, previous studies did not control for task resource artifacts potentially introduced by the generally higher task difficulty of phonological compared to semantic fluency. We addressed these issues by task-difficulty adjusted assessment of semantic and phonological fluency in 85 chronic patients with ischemic stroke of the left middle cerebral artery. For classical region-based lesion-behavior mapping patients were grouped with respect to their primary lesion location. Building on the extension of the non-parametric Brunner-Munzel rank-order test to multi-factorial designs, ANOVA-type analyses revealed a significant two-way interaction for cue type (semantic vs. phonological) by lesion location (left temporal vs. left frontal vs. other as stroke control group). Subsequent contrast analyses further confirmed the proposed double dissociation by demonstrating that (i) compared to stroke controls, left temporal lesions led to significant impairments in semantic but not in phonological fluency, whereas left frontal lesions led to significant impairments in phonological but not in semantic fluency, and that (ii) patients with frontal lesions showed significantly poorer performance in phonological than in semantic fluency, whereas patients with temporal lesions showed significantly poorer performance in semantic than in phonological fluency. The anatomical specificity of these findings was further assessed in voxel-based lesion-behavior mapping analyses using the multi-factorial extension of the Brunner-Munzel test. Voxel-wise ANOVA-type analyses identified circumscribed parts of left inferior frontal gyrus and left superior and middle temporal gyrus that significantly double-dissociated with respect to their differential contribution to phonological and semantic fluency, respectively. Furthermore, a main effect of lesion with significant impairments in both fluency types was found in left inferior frontal regions adjacent to but not overlapping with those showing the differential effect for phonological fluency. The present study hence not only provides first explicit evidence for the anatomical double dissociation in verbal fluency at the group level but also clearly underlines that its formulation constitutes an oversimplification as parts of left frontal cortex appear to contribute to both semantic and phonological fluency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526291 | PMC |
http://dx.doi.org/10.1016/j.nicl.2019.101840 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!