The objective of this study is to characterize changes in the fate, behaviour and bioavailability of four conazole fungicides - CFs (prochloraz - PRO, tebuconazole - TEB, epoxiconazole - EPO, flusilazole - FLU) in 12 diverse agricultural soils in complex microcosm systems consisting of agriculturally-used fluvisols, plants (Lactuca sativa), earthworms (Eisenia fetida) and passive samplers (SPME, Empore™ discs, silicone rubber). Due to great variability of the data and other methodological problems, the in-matrix passive samplers failed to be indicators of pore-water concentration and (bio)availability/(bio)accessibility of CFs. A dissipation of all CFs followed the first order kinetics (usually after initial lag phase) with large span of resulting half-lives (7-670 d) depending on soils and compounds. In many soils, the model revealed the ending plateau, which indicates the non-degradable or slowly-degradable residues. The half-lives and the residues were generally higher for EPO and FLU, than for PRO and TEB. Greater but slower total dissipation of CFs was observed in soils with higher percentage of organic matter. Earthworm concentrations were highest at first sampling time (14 days) and considerably decreased afterwards often resulting in PRO concentration below LOQ. Earthworm uptake was influenced by amount of organic matter and soil texture. Accumulation to lettuce roots was generally higher than to leaves and differed greatly among CFs. Concentration shoot to root ratios were generally the lowest for FLU (0.04) and highest for TEB (0.37). PRO was not detected in lettuce leaves during experiment. The study brings new results on fate and bioavailability of CFs in soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.04.227 | DOI Listing |
Environ Res
January 2025
Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain; Comunidades Microbianas de suelos (id. UA 1678), MBG-CSIC/ Universidad de Vigo, Unidad asociada al CSIC, Spain.
The overuse of pesticides in agriculture has led to widespread pollution of soils and water resources, becoming a problem of great concern. Nowadays, special attention is given to neonicotinoids, particularly acetamiprid, the only neonicotinoid insecticide allowed for outdoor use in the European Union. Once acetamiprid reaches the soil, adsorption/desorption is the main process determining its bioavailability and environmental fate.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
Interactions between manganese dioxides (MnO) and dissolved organic matter (DOM) have long been the subject of scientific inquiry. However, the effect of MnO crystallinity on the DOM fate remains unclear. Herein, we comprehensively investigate the adsorption, protection, and mineralization of DOM by MnO with various crystallinities (order of crystallinity: γ-30 < γ-90 < γ-120).
View Article and Find Full Text PDFFood Res Int
January 2025
Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam. Electronic address:
The discovery of food-derived biopeptides is becoming increasingly prevalent in the scientific community. Some peptides possess multiple biological functions that can confer health benefits through various mechanisms following ingestion. The present review targets food-derived antioxidant and mineral-binding peptides (AMBPs) including their production procedure i.
View Article and Find Full Text PDFMar Environ Res
December 2024
Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China. Electronic address:
Macroalgae widely distribute in intertidal zones, one of blue carbon organisms. However, the regulatory mechanisms of tide on the carbon sequestration of macroalgae are still unclear. This study explored the effects of desiccation-rewetting cycles induced by tide on dissolved organic carbon (DOC) release from Ulva pertusa, which is prevalent from high to low tidal zones.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!