This study investigated the influence of three different organic carbon sources including sodium acetate (SOD), glucose (GLU), and starch (STAR), on soluble microbial products (SMP), which presumably have dissimilar uptake rates and metabolic pathways, in sequencing batch reactors (SBR) and their subsequent effects on membrane fouling of ultrafiltration (UF). SMP were mainly characterized by fluorescence excitation emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and size exclusion chromatography (SEC). SMP produced in SOD-fed SBR showed higher abundances of protein-like fluorescent component and large sized aliphatic biopolymer (BP) than GLU- or STAR-fed counterpart did, while the STAR-based operation resulted in more SMP enriched with humic-like fluorescence. The differences in SMP exerted marked effects on UF membrane fouling as indicated by the highest fouling potential with reversibility shown for the SMP from the SOD-fed reactor. Regardless of the carbon source, BP fraction and protein-like component exhibited the greatest extent of reversible fouling, suggesting that size exclusion plays a critical role. However, notable differences in the reversible fouling propensity of relatively smaller size fractions among the three SBRs signified the possible involvement of chemical interactions as a secondary fouling mechanism and its dependency on different carbon sources. Our results provide a new insight into the roles of carbon sources in the characteristics of SMP in biological treatment systems and their effects on the post-treatment using membrane filtration, which is ultimately beneficial to the optimization of biological treatment design and membrane filtration operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2019.05.045 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
Mixed matrix membranes (MMMs) can significantly improve gas separation performance, but the type and state of the filler in the membrane matrix are key indicators for the development of MMMs. Therefore, in this work, 6FDA-DAM/ODA (1:1), metal-organic frameworks (MOFs) with different particle sizes (UiO-66 and UiO-66-NH) were synthesized, and then MOFs were doped into 6FDA-DAM/ODA to prepare MMMs. The effects of the dopant materials and their particle sizes on the gas separation performance of the membranes were investigated by testing the permeability of the MMMs to H, CO, CH, and N.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada.
The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20-30% of the bacterial cellular proteins.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
1Institute of Applied Sciences, Academy of Physical Education, Kraków, Poland.
: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. : The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.
Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).
View Article and Find Full Text PDFBiomacromolecules
January 2025
State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!